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ABSTRACT 

 

This work aimed to prepare different adsorbent materials (bioadsorbent, pyrochar, 

hydrochar, and activated carbon), using olive stone and malt bagasse as feedstock and 

evaluating its performance and effectiveness in the adsorption of ammonia (NH3), 

deriving from composting leachate. A lab-scale adsorption system was assembled for the 

adsorption tests. The performance and effectiveness of the adsorbents on NH3 adsorption 

were evaluated objectively, by chemical analytical measurement, and subjectively by 

olfactometric assessment using the human sense of smell. The materials' preparation was 

studied to assess the biomass loss and the carbon released into the liquid phase during the 

hydrothermal carbonization process. Besides, resultant adsorbents were characterized to 

study their surface chemistry, elemental analysis, and textural properties. Saturated 

adsorbents were regenerated using water and subsequently re-used in the adsorption of 

NH3 coming from the leachate to assess their adsorption capacities after a sorption-

desorption cycle. The hydrochar derived from olive stone, prepared by hydrothermal 

carbonization assisted by sulfuric acid (H2SO4), was found as the best adsorbent for NH3 

removal produced in this work since it has the lowest height of mass transfer zone (0.315 

- 0.520 cm) and the highest NH3 adsorption capacity (9.445 - 11.421 mg g-1). The 

bioadsorbent prepared only by milling and drying olive stones was also capable of 

adsorbing NH3, showing a height of mass transfer zone of 0.484 - 0.565 cm, and an 

adsorption capacity of 0.975 - 1.455 mg g-1; besides the advantage of being 

environmentally-sound since it requires low energy expenditure, and no chemicals are 

used in its preparation. The olfactometric evaluations confirmed that the adsorbents 

mentioned above, prepared by olive stone, can reduce odor annoyance of the gases 

derived from leachate. Finally, the regeneration process using water delivered adsorbents 

capable of being used in one NH3 sorption-desorption cycle, with satisfactory 

performance (>70% of the mean NH3 adsorption capacity of its respective first-generation 

adsorbents), leading to increasing the materials' resource-use efficiency. 

 

Keywords: adsorption, agro-industrial waste, biomass, leachate, ammonia. 
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RESUMO 

 

Este trabalho teve como objetivo preparar diferentes materiais adsorventes 

(bioadsorvente, pyrochar, hydrochar e carvão ativado), utilizando caroço de azeitona e 

bagaço de malte como matéria-prima e avaliar seu desempenho e eficácia na adsorção de 

amoníaco (NH3), proveniente do lixiviado de compostagem. Um sistema de adsorção em 

escala de laboratório foi montado para os testes de adsorção. O desempenho e eficácia 

dos adsorventes na adsorção de NH3 foram avaliados objetivamente, por medição 

analítica química, e subjetivamente, por avaliação olfatométrica usando o sentido do 

olfato humano. A preparação dos materiais foi estudada para avaliar a perda de biomassa 

e o carbono liberado na fase líquida durante o processo de carbonização hidrotermal. 

Além disso, os adsorventes resultantes foram caracterizados para estudar sua química de 

superfície, sua análise elementar e suas propriedades texturais. Adsorventes saturados 

foram regenerados com água e posteriormente reutilizados na adsorção de NH3 

proveniente do lixiviado para avaliar sua capacidade de adsorção após um ciclo de sorção-

dessorção. O hydrochar derivado de caroço de azeitona, preparado por carbonização 

hidrotermal assistida por ácido sulfúrico (H2SO4), foi apontado como o melhor adsorvente 

para remoção de NH3 produzido neste trabalho, por apresentar a menor altura de zona de 

transferência de massa (0,315 - 0,520 cm) e a maior capacidade de adsorção de NH3 

(9,445 - 11,421 mg g-1). O bioadsorvente preparado apenas pela moagem e secagem do 

caroço da azeitona também foi capaz de adsorver NH3, apresentando uma altura de zona 

de transferência de massa de 0,484 - 0,565 cm e uma capacidade de adsorção de 0,975 - 

1,455 mg g-1; além da vantagem de ser ambientalmente adequado, uma vez que requer 

baixo gasto de energia e nenhum produto químico é utilizado em sua preparação. As 

avaliações olfatométricas confirmaram que os adsorventes citados acima, preparados a 

partir de caroço de azeitona, podem reduzir a incomodidade do odor dos gases derivados 

do lixiviado. Por fim, o processo de regeneração com água forneceu adsorventes capazes 

de serem utilizados em um ciclo de sorção-dessorção de NH3, com desempenho 

satisfatório (> 70% da capacidade média de adsorção de NH3 de seus respectivos 

adsorventes de primeira geração), levando ao aumento da eficiência de utilização dos 

materiais. 

 

Palavras-chave: adsorção, resíduo agro-industrial, biomassa, lixiviado, amônia. 
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1 INTRODUCTION 

 

1.1 Background 

 

Odorous pollutants may result directly or indirectly from human activities (e.g., 

composting plants, landfills, and wastewater treatment plants). They may cause adverse 

effects, including various undesirable reactions, ranging from annoyance to documented 

health effects. In residences and workplaces exposed to odors resulting from gaseous 

emissions, even though the affected individuals may not immediately appear diseased or 

infirm, there certainly is not an atmosphere of complete mental, social, or physical well-

being (Nicell, 2009).  

Despite contributing to proper waste management, landfill facilities and compost 

plants typically are sources of odor pollution (Rincón et al., 2019). A study carried out by 

Cheng et al. (2019) showed that both waste treatment facilities mentioned above have 

NH3 as one of the most critical offensive odorants that should be considered on health 

risk assessment. 

Agro-industrial solid waste is mostly composed of organic matter, known as 

biomass, that comes from plants. The biomass stores chemical energy in the form of 

carbohydrates (Sansaniwal et al., 2017). It is the only renewable source of carbon that can 

be transformed into a solid, liquid, and gaseous products through various conversion 

processes (Mohamed et al., 2010). Among the appropriate destinations of the biomass 

residue produced in agro-industrial activities is converting this inexhaustible, low-cost, 

and non-hazardous biomass into carbonaceous materials (Mohtashami et al., 2018). 

Research is underway in the field of agricultural waste valorization as potential 

adsorbent materials for pollution control since they have a porous structure and a 

macromolecular matrix that consists of polymer chains which contain numerous 

polyvalent functional groups (such as carboxylic and hydroxylic reactive groups) (Calero 

et al., 2010). Efforts are being made to achieve sustainable production of carbonaceous 

materials derived from biomass. Sustainable production of these adsorbents requires 

proper management of biomass, water, energy, chemicals, and appropriate residuals 

management (Daramola & Ayeni, 2020). 
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Olive-based products are primary elements in the EU’s southern countries’ 

agricultural economy, with about 5 million hectares of plantations and more than €7 

billion in production value every year (Rossi, 2017). The EU accounts for 70 to 75 % of 

the world production of olive oil. More than half of the olive plantation areas in the EU 

are located in Spain, and most of it is used for olive oil production  (Rossi, 2017). The 

main byproduct generated during the processing of olives for oil production is a residue 

named olive cake, consisting of a mixture of crushed stones (also known as pits), seeds, 

peel, and pulp (Sanginés et al., 2015). The production of olives for oil and table use in the 

EU was about 10.5 million tons in the 2018-2019 harvesting year (Eurostat, 2020). It is 

estimated that olive stone (OS) ranges from 8 to 15% of the weight of the olives (Pattara 

et al., 2010), so that about 0.8 to 1.6 million tons of OS may have been generated during 

the processing of olives in the EU in 2018-2019. 

Brazil is the third-largest beer producer globally, after China and EUA, and has 

produced 13.3 billion liters of the product in 2016 (SINDICERV, 2020). Malte bagasse 

(MB) is considered the most crucial residue of the beer production process (Mello & Mali, 

2014). That residue is generated in the cereals’ filtration used in the brewing process 

(Nadolny et al., 2020). It is estimated that approximately 17 to 20 kg of MB is generated 

to produce 100 liters of beer (Franciski et al., 2018), so that about 2.3 to 2.7 million tons 

of bagasse may have been generated during beer production in Brazil in 2016.  

The valorization of agro-industrial biomass as a precursor of adsorbents is a 

practical manner to increase resource-use efficiency. It keeps natural resources in use for 

as long as possible, which is the principle of the circular economy (Baldikova et al., 2019). 

Also, it may contribute to reducing the use of non-renewable resources in the commercial 

production of adsorbents. Bioadsorbent, pyrochar, hydrochar, and activated carbon (AC) 

are types of adsorbent materials synthesized from biomass, thus producing 

environmentally sound adsorbents for pollutant removal (Chen et al., 2017; Eslami et al., 

2018). 

Bioadsorbent consists of low-cost organic matter with a natural affinity for 

inorganic and organic pollutants (Fomina & Gadd, 2014; Safarik et al., 2018). Pyrochar 

is the solid char remaining from the organic matter’s thermal decomposition under an 

inert atmosphere, a high-carbon material with good porosity and surface area (Ioannidou 

& Zabaniotou, 2007). The thermal treatment removes the moisture and the volatile matter 
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contents of the biomass (Lehmann & Joseph, 2009; Mohamed et al., 2010). Hydrochar is 

a material obtained by hydrothermal carbonization (HTC), a thermo-chemical process, 

which uses water, heat, and high pressure to convert biomass into carbonaceous materials 

through fractionation of the feedstock (Daramola et al., 2020; Jain et al., 2016; Ok et al., 

2016). According to the International Union of Pure and Applied Chemistry (IUPAC), 

AC is “a porous carbon material, a char which has been subjected to reaction with gases, 

sometimes with the addition of chemicals, before, during or after carbonization in order 

to increase its adsorptive properties” (IUPAC, 1997). 

Agricultural biomass waste could be the basis of a low-cost NH3 adsorbent, 

allowing the recycling of residues and the abatement of air pollutants simultaneously 

(Kastner et al., 2009). In the literature, many studies have focused on producing 

adsorbents derived from biomass and their assessment of adsorption tests of gaseous 

pollutants derived from commercial bottles. This work presents a different approach 

focused on bioresource technology to produce adsorbents and their application in 

emission control of an odor’s actual source.  

Based on the three fundamental pillars of sustainability, this work seeks to 

improve environmental, economic, and social spheres: organic matter recycling, air 

pollution abatement, resource-use efficiency, environmentally sound technology 

development, health and well-being, and safety. As part of the 2030 Agenda for 

Sustainable Development, the United Nations Sustainable Development Goals (SDGs) 

consists of seventeen global goals for the next eleven years in areas of critical importance 

for humanity and the planet (United Nations, 2015). This work is directly aligned with 

four SDGs, as shown below. 

Goal 3 (Good Health and Well-being) has included targets for air pollution 

prevention and control to ensure healthy lives and promote the well-being of all. The 

definition of “health” given by the World Health Organization (WHO) is “a state of 

complete physical, mental and social well-being and not merely the absence of disease or 

infirmity”. Given the above, the importance of controlling odorous gas emissions is 

noticeable because even the odor annoyance can affect well-being. 

Goal 9 (Industries, Innovation, and Infrastructure) includes targets for increased 

resource-use efficiency and greater adoption of clean and environmentally sound 

technologies and industrial processes. Agro-industrial biomass’s valorization as a 



Thalles Perdigão Lima 

4 
  
  

precursor of adsorbents is a practical manner to increase resource-use efficiency, 

producing an environmentally sound technology for pollutant removal. Additionally, re-

using this recovered product reduces non-renewable material on commercial adsorbents’ 

production.  

Goal 11 (Sustainable Cities and Communities) includes targets for reducing 

adverse per capita environmental impact of cities and communities by paying particular 

attention to air quality and municipal and other waste management. Once again, the 

importance of controlling gas emission is evident, including the odorous ones, and besides 

the proper management of agro-industrial waste, not to mention the agricultural biomass. 

Goal 12 (Responsible Consumption and Production) includes targets for the 

environmentally sound management of chemicals and all wastes throughout their life 

cycle by reducing their release to air, water, and soil to minimize their adverse impacts 

on human health and the environment. This goal also includes targets for substantial waste 

generation abatement through prevention, reduction, recycling, and re-use. Reiteratively 

recycling organic biomass by converting it into new materials reduces waste released into 

the environment, reducing its adverse impacts. 

 

1.2 Objectives  

 

1.2.1 General Objective 

 

This thesis aims at preparing adsorbent materials using olive stone and malt 

bagasse as feedstock and evaluates its performance and effectiveness in the adsorption of 

NH3, deriving from leachate originated from a composting line of mechanical and 

biological treatment of municipal organic wastes, by using an experimental system 

developed for this purpose. 

 

1.2.2 Specific Objectives  

 

 The specific objectives of this research are to: 

I. provide a literature review about agro-industrial residues, carbonaceous 

adsorbents and odorous air emissions;  
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II. prepare adsorbent materials using agro-industrial organic residues as 

feedstock; 

III. characterize the materials produced; 

IV. set-up an experimental adsorption system;  

V. evaluate the odorous pollutant NH3, generated from zero-air generator and 

leachate, regarding emission rates; 

VI. evaluate the performance and effectiveness of the materials in the adsorption 

of NH3 by chemical analytical measurement; 

VII. prepare a low-cost olfactometer to access the olfactory analysis; 

VIII. evaluate the performance and effectiveness of the materials in the adsorption 

of NH3 by olfactometric assessment; 

IX. evaluate the regeneration of adsorbents saturated with NH3 by an 

environmentally sound process. 

 

1.3 Organization of the thesis 

 

Chapter 1 introduces the thesis. Firstly, it presents the background of the central 

themes, including the emission and negative impacts of odorous pollutants, agro-

industrial organic waste production and valorization, the adsorption of odorous pollutants, 

and the sustainable approach of this work confirmed by its alignment with the United 

Nations Sustainable Development Goals (SDGs). The background is followed by the 

presentation of the general and specific objectives of this work.  

Chapter 2 presents relevant literature regarding organic waste, carbonaceous 

adsorbents, and odorous emissions. The first topic presents the characteristics of 

lignocellulosic residues, its different applications, and the Brazilian and Portuguese legal 

frameworks on this theme. The second topic presents the various applications of 

carbonaceous materials, the types and characteristics of adsorbents derived from biomass, 

and the regeneration processes for re-use. Lastly, the third topic presents the pollutants 

and sources of odor, the prevention and methods of measuring and controlling odorous 

emissions, the methods of adsorption of odorous pollutants, and the Brazilian and 

Portuguese legal frameworks on this theme. 
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Chapter 3 covers the detailed methodology of this work, which was developed 

based on the literature. The materials and equipment used are presented. The methods of 

preparation of four types of adsorbents are described. The methods to determine the 

biomass loss, the total organic carbon in the liquid effluent, and elemental analysis of the 

adsorbents are presented. The methods of characterization of the adsorbents regarding 

surface chemistry characteristics, ashes, textural properties, and void fraction are 

presented. The setting-up of the lab-scale system assembled to run adsorption tests is 

explained. The evaluation methods of zero-air and leachate off-gases, and the objective 

and subjective evaluation of NH3 adsorption are detailed. Lastly, it presents the 

regeneration method of the adsorbents statured with NH3 using water and the 

characteristics of this process’s liquid effluent. 

Chapter 4 presents the results obtained after the development of the steps 

explained in Chapter 3.  

Finally, Chapter 5 presents the conclusions and recommendations for future work. 
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2 LITERATURE REVIEW 

 

This literature review chapter begins with organic waste, presenting the 

lignocellulosic residues’ characteristics, its different applications, and the Brazilian and 

Portuguese legal frameworks on this theme. The following topic presents the various 

applications of carbonaceous materials, the types and characteristics of adsorbents 

derived from biomass, and the regeneration processes for re-use. The final topic presents 

the pollutants and sources of odor, the prevention and methods of measuring and 

controlling odorous emissions, specifies the adsorption method, and the Brazilian and 

Portuguese legal frameworks on this theme. 

 

2.1 Organic waste 

 

2.1.1 Agro-industrial residues 

 

The European Commission defines waste as “any substance, material, or object 

which the holder discards or intends or is required to discard” (European Union, 2008b), 

and therefore, is no longer useful for the holder (Islas et al., 2019). Solid waste is any 

waste in the solid and semi-solid state resulting from industrial, domestic, hospital, 

commercial, agricultural, or municipal activities (ABNT, 2004). The waste may be 

divided into two main groups: organic waste (composed of organic matter); and non-

organic waste (composed essentially of inorganic matter).  

Agro-industrial solid waste is mostly composed of organic matter, known as 

biomass, that comes from plants. The biomass stores chemical energy in carbohydrates 

by combining solar energy and carbon dioxide using the photosynthesis process 

(Sansaniwal et al., 2017). It is considered the only renewable source of carbon that can 

be transformed into a solid, liquid, or gaseous products through diverse processes 

(Mohamed et al., 2010).  

The OS, MB, and other agricultural organic waste are considered non-hazardous, 

which means that, because of its physical, chemical, and infectious properties, it does not 

pose risks to human health, either to the environment when properly managed (ABNT, 

2004). However, many developing countries produce immense biomass waste and 
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destroy or burn them inefficiently, causing pollution of the environment (Bhatnagar et al., 

2016).  

Most agricultural wastes are considered carbon-containing lignocellulosic 

materials (Uçar et al., 2009). The high amounts of carbon (C), oxygen (O), and hydrogen 

(H) present in this type of waste are related to the three major structural polymers present 

in lignocellulosic feedstock: cellulose, hemicellulose, and lignin (González-García, 

2018). Table 1 presents the composition of various agricultural wastes, by proximate and 

ultimate analysis, based on a scientific literature review carried out by Yahya, Al-Qodah, 

& Ngah (2015).  

 

Table 1. Proximate and ultimate analysis of various agricultural waste (Yahya et al., 2015). 

 

 

 

Moisture Ash Volatiles C H N S O

Palm shell 7.96 1.10 72.47 50.01 6.90 1.90 0.00 41.00
Palm stem 6.06 4.02 72.39 45.56 5.91 0.82 - 47.71
Grape stalk 15.69 10.16 51.08 46.14 5.74 0.37 0.00 36.60
Bamboo - 3.90 80.60 43.80 6.60 0.40 0.00 -
Coconut shell 8.21 0.10 73.09 48.63 6.51 0.14 0.08 44.64
Olive mill <5.0 <1.0 - 45.64 6.31 1.42 - -
Almond shell 10.00 0.60 80.30 50.50 6.60 0.20 0.01 42.69
Wallnut shell 11.00 1.30 71.80 45.10 6.00 0.30 0.00 48.60
Almond tree pruning 10.60 1.20 72.20 51.30 6.50 0.80 0.04 41.36
Olive stone 10.40 1.40 74.40 44.80 6.00 0.10 0.01 49.09
Bamboo 2.44 6.51 69.63 45.53 4.61 0.22 - -
Durian shell 11.27 4.84 - 39.30 5.90 1.00 0.06 53.74
Chinese fir sawdust 4.88 0.32 79.92 48.95 6.54 0.11 0.00 39.20
Banana empty fruit bunch 5.21 15.73 78.83 41.75 5.10 1.23 0.18 51.73
Delonix regia  fruit pods 0.22 2.80 92.03 34.22 4.50 1.94 0.42 58.91
Corn cob 4.30 0.90 78.70 46.80 6.00 0.90 - 46.30
Pomegranate seed 5.38 1.83 78.71 49.65 7.54 4.03 0.65 38.13
Birch 4.40 0.18 - 48.40 5.60 0.20 - 45.80
Salix 7.30 0.75 - 48.80 6.20 1.00 - 43.40
Sugarcane bagasse 6.20 0.90 - 47.30 6.20 0.30 - 46.20
Wheat straw 3.30 3.23 - 46.50 6.30 0.90 - 46.30
Bagasse - 6.20 83.30 41.55 5.55 0.03 - 52.86
Rice husk - 16.70 67.50 36.52 4.82 0.86 - 41.10
Cassava peel 11.40 0.30 59.40 59.31 9.78 2.06 0.11 28.74
Rice stalk 14.17 14.93 66.33 40.79 7.66 1.17 0.49 49.89
Woody birch 6.60 0.20 81.20 48.40 5.60 0.20 - 45.80

Proximate analysis (% w/w) Ultimate analysis (% w/w)
Agricultural waste
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In the case of OS, elemental analysis has shown the composition weight 

percentages (%wt): 43.1 – 52.34 C; 5.9 – 7.11 H; 0.03 - 1.0 nitrogen (N); 0.01 – 0.8 sulfur 

(S); 40.47 – 49.1 O, and 0.37 – 4.4 ash (Cagnon et al., 2009; Ghouma et al., 2015; 

González et al., 2009; Martín-Lara et al., 2013). The amount of elemental C of OS is 

considered one of the highest among various stone fruits (Saleem et al., 2019). On the 

other hand, MB elemental analysis has shown the %wt: 46.84 C; 8.18 H; 3.86 N; 0.38 S; 

40.74 O, and 2.78 ash (Franciski et al., 2018; Mello et al., 2014). 

All three major structural polymers (cellulose, hemicellulose, and lignin) play an 

essential role in the porosity of the chars and ACs. The lignin has been identified as the 

main component responsible for high values of the external area and good porosity 

characteristics (Cagnon et al., 2009; González et al., 2009; Williams & Besler, 1993). 

Table 2 shows the lignocellulosic composition of a variety of agricultural wastes based 

on scientific literature reviews. 

 

Table 2. Lignocellulosic compositions of agricultural residues.  
Based on Razi et al. (2018), Yahya et al. (2015), Blanco López et al. (2002), Cagnon et al. 

(2009) and González et al. (2009). 

Agricultural waste 
Lignin 

(%) 
Cellulose 

(%) 
Hemicellulose 

(%) 

Almond shell 24.8 32.5 25.5 

Almond tree pruning 25.0 33.7 20.1 

Apple pulp 21.0 16.0 16.0 

Banana empty fruit bunch 19.06 8.3 21.23 

Cassava waste 2.2 18.47 6.01 

Cocoa pods 0.95 41.92 35.26 

Coconut husk 3.54 0.52 23.7 

Coconut shell 30.1-50.0 14.0-19.8 32.0-68.7 

Flamboyant fruit pod 23.36 13.9 24.13 

Kola nut pod 21.29 38.72 40.41 

Lemon waste 7.22 18.49 6.07 

Olive stone 32.6-50.45 11.82-30.8 15-24.16 

Palm shell 53.4 29.0 47.7 

Plantain peel (ripe) 1.63-1.75 13.87 15.07 

Plantain peels (unripe) 1.75 10.15 11.38 

Plum pulp 39.0 6.5 14.5 

Plum stone 49.0 23.0 20.0 

   (continued) 



Thalles Perdigão Lima 

10 
  
  

Table 2. Lignocellulosic compositions of agricultural residues.  
Based on Razi et al. (2018), Yahya et al. (2015), Blanco López et al. (2002), Cagnon et al. 

(2009) and González et al. (2009). 

Agricultural waste 
Lignin 

(%) 
Cellulose 

(%) 
Hemicellulose 

(%) 

Pomegranate seed 39.67 26.98 25.52 

Soft wood 30.5 36.0 18.5 

Sugarcane bagasse 18.0-24.0 42.2-55.0 20.0-36.0 

Walnut shell 18.2 40.1 20.7 
 

OS is composed predominantly of lignin with approximately 32.6 – 50.45% 

lignin; 11.82 – 30.8 % cellulose; and 15.0 – 24.16% hemicellulose, thus making it ideal 

as precursors for adsorbents (Blanco López et al., 2002; Cagnon et al., 2009; Razi et al., 

2018; Saleem et al., 2019; Yahya et al., 2015). On the other hand, MB is approximately 

24.05 –26.13% lignin; 11.35 – 12.29 % cellulose; and 23.41 – 28.97% hemicellulose, also 

ideal as a precursor for adsorbents (Mello et al., 2014).  

Several lignocellulosic wastes are potential feedstock for bioenergy production, 

as liquid biofuels (via pyrolysis) or solid fuels (biomass pellets) (Volpe et al., 2018). 

Biofuel can be produced from several food crops, including grains (maize, sorghum, and 

wheat), sugar crops (sugarcane, sugar beet), starch crops (cassava), oilseed crops 

(canola/rape, soybean, and oil palm), and olive crops (olive stones) (Bordonal et al., 

2018). Despite savings in greenhouse gases emissions, by substituting fossil fuels, the 

combustion of biomass usually results in other atmospheric pollutants that may also be 

detrimental to the environment and human health (e.g., volatile organic compounds 

(VOCs), carbon monoxide (CO), nitrogen oxides (NOx), and particulates (soot and ash)) 

(Sanginés et al., 2015). 

Thanks to the development of various waste recycling technologies, an increasing 

number of technological solutions for agricultural waste are emerging (Spalvins et al., 

2018). Among the technological approaches, it is the extraction of high value-added 

products such as enzymes, single-cell oil, building block chemicals, single-cell protein 

(Spalvins et al., 2018), nanocellulose (Rajinipriya et al., 2018); and supercritical carbon 

dioxide extraction of waxes from waste (Al Bulushi et al., 2018). In the construction 

sector, oil palm shells have been found useful as coarse aggregate in structural concrete 

(Mannan & Ganapathy, 2004). Various agricultural waste has been found helpful in 
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developing bricks (Raut et al., 2011). Treuer et al. (2017) observed a good synergism 

between orange peels and pulp, tropical forest restoration, and carbon sequestration in 

Costa Rica.  

Adsorption has been successfully employed to remove inorganic and organic 

pollutants in the environment in general (Dai et al., 2018). The use of biomass waste for 

this purpose reduces the environmental waste burden and achieves the effect of treating 

pollution with waste (Y. Y. Huang, 2017).  

 

2.1.2 Legal framework on solid organic waste 

 

2.1.2.1 Brazilian Approach 

 

 The Brazilian Política Nacional de Resíduos Sólidos (National Policy on Solid 

Waste), established by Law nº 12.305, of 02 August 2010 (Brasil, 2010), provides 

guidelines on integrated management of solid waste, the responsibilities of the waste 

producers and public authorities, and the applicable economic instruments. The approval 

of Law nº 12.305 has initiated joint work between the public spheres, the productive 

sector, and civil society to search for solutions to solid waste problems.  

In conformity with Article 6, the sustainable development and the recognition of 

reusable and recyclable solid waste as an economic good of a social value stand out as 

principles of the abovementioned Policy. In accordance with Article 7, essential 

objectives of this law are (II) the non-generation, reduction, re-use, recycling, and 

treatment of solid waste, as well as environmentally appropriate final disposal of waste; 

and (IV) the adoption, development, and improvement of clean technologies as a means 

of minimizing negative environmental impacts.  

Article 8 brought among the policy’s essential instruments the scientific and 

technological research. Article 14 presented a critical plan, the Plano Nacional de 

Resíduos Sólidos (National Plan on Solid Waste), which covers the many types of waste 

generated in the country, possible waste management alternatives, as well as 

corresponding goals and actions for various scenarios.  

Law nº 12.305 mentions the term “organic waste” only once in Article 36 as a 

shared responsibility (V) implementing a composting system for organic waste and 
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articulating ways of using the produced compost. Although the above exposed, based on 

the definition of “recycle” given by Article 3 as “waste transformation processes that 

involve chemical, physical-chemical or biological changes, in view of producing inputs 

or new products”, recycling of organic waste should not be only by biological processes 

but also by chemical and physical-chemical processes.  

It was possible to verify many Brazilian legal texts regulating the production and 

use of biofertilizers derived from organic waste (e.g., Law nº 6.894/80, Decree nº 

4.954/04); however, no legal documents discuss other applications of recycled organic 

waste. 

Regarding the local legal framework, the Política Estadual de Resíduos Sólidos 

(State Policy on Solid Waste) of Minas Gerais, established by Law nº 18.031 (Minas 

Gerais, 2009), of 12 January 2009, provides guidelines on integrated management of solid 

waste in the state of Minas Gerais. Article 51 mentions organic waste just twice. A public 

financial incentive is offered for initiatives that use municipal and rural organic waste for 

energy production and rural organic waste recovery from intensive livestock. Law nº 

21.557 (Minas Gerais, 2014), of 22 December 2014, adds to Law nº 18.031 the 

prohibition of using incineration technology as the final destination of municipal waste, 

including the organic fraction.  

It was observed that, as well as the federal legal documents, the local legislation 

in Minas Gerais does not cover the incentive or application of technologies for recycling 

organic waste.  

 

2.1.2.2 European and Portuguese approach  

 

Directive 2008/98/EC (European Union, 2008b) of the European Parliament and 

the European Council, of 19 November 2008, also called Waste Framework Directive, 

defines key concepts such as waste, recovery, and disposal. It also establishes the 

requirements for managing waste, including the obligation for an establishment or 

undertaking carrying out waste management operations to obtain a permit or be registered 

and an obligation for the Member States to formulate waste management plans. Those 

plans shall, alone or in combination, cover the entire geographical territory of the EU’s 

States.  
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The directive mentioned above brings important definitions in Article 3. First, 

“treatment” is defined as “recovery or disposal operations, including preparation before 

recovery or disposal”. This definition brings the word “recovery”, which is defined as 

“any operation the principal result of which is waste serving a useful purpose by replacing 

other materials which would otherwise have been used to fulfill a particular function, or 

waste being prepared to fulfill that function, in the plant or the wider economy”. Annex 

II sets out a non-exhaustive list of recovery operations, among which is the R3 – 

Recycling/reclamation of organic substances which are not used as solvents (including 

composting and other biological transformation processes). It includes preparing for re-

use, gasification, and pyrolysis using the components as chemicals and recovery of 

organic materials in the form of backfilling. The term “recycling” pointed before is 

defined as “any recovery operation by which waste materials are reprocessed into 

products, materials or substances whether for the original or other purposes. Based on the 

definitions and processes presented above, reprocessing of organic material, which 

includes processing and use of agricultural biomass waste as a precursor of adsorbents, it 

is a recycling treatment, but the energy recovery and the reprocessing into materials that 

are to be used as fuels or for backfilling are not. 

Nonetheless, Article 2 excludes from the scope of the Directive 2008/98/EC 

“…straw and other natural non-hazardous agricultural or forestry material used in 

farming, forestry, or to produce energy from such biomass through processes or methods 

which do not harm the environment or endanger human health”. As Annex III does not 

cover the agricultural biomass waste, it is characterized as natural non-hazardous waste.  

Despite the exclusion of agricultural waste from its scope, the Directive 

2008/98/EC includes food processing plants as “bio-waste”, according to its Article 3. It 

also demonstrates that promoting the separate collection and adequate treatment of bio-

waste is fundamental to produce environmentally safe compost and other bio-waste-based 

materials. 

There are no specific legal EU documents regarding agro-industrial organic waste 

production and destination. However, the European Waste List, established by Decision 

2014/955/UE, of 18 December 2014 (European Union, 2014), presents the list of waste 

referred to in Article 7 of Directive 2008/98/CE. It is a harmonized list of waste that 

considers the origin and composition of the waste. The waste from agriculture, 
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horticulture, aquaculture, forestry, hunting, and fishing is defined by the four-digit code 

0201. OS and MB are included in the abovementioned group as a plan-tissue waste, 

represented by the six-digit code 020103. 

Directive 2018/851/EC (European Union, 2018) of the European Parliament and 

the European Council, of 30 May 2018, introduced an amendment to Directive 

2008/98/CE on solid waste. The first topic of Directive 2018/851/EC presents the need to 

improve and transform “waste management” into “sustainable material management” to 

protect, preserve, and improve the environment’s quality. Another critical point of this 

amendment concerns improving resource use, valuing waste, reducing dependence on 

imported raw materials, and facilitating the transition to more sustainable material 

management and a circular economy model. The amendment takes measures on 

sustainable production and consumption by focusing on the whole life cycle of products 

to preserve resources and closes the loop to make the economy truly circular.  

Considering the circular economy approach’s inclusion as an essential matter in 

waste management, recycling materials to use them for technological applications can 

improve the environment’s quality. The use of recycled agricultural biomass as 

adsorbents of pollutants contributes twice to the environmental quality improvement once 

it reinserts the material in the process, as proposed by the circular economy, and 

simultaneously contributes to pollution control. 

Portuguese Decree-Law nº 73/2011(Portugal, 2011), of 17 July 2011, introduced 

the third amendment to Decree-Law nº 178/2006, of 05 September 2006, with changes in 

the general regulation of waste management and transposed Directive 2008/98/CE. Under 

the Member States’ obligation to draw up waste management plans, imposed by Directive 

2008/98/EC, Portugal elaborated the Plano Nacional de Gestão de Resíduos (National 

Solid Waste Management Plan) 2014-2020. This plan established national strategic 

guidelines for waste prevention policy and waste management and the guiding rules 

ensuring the coherence of specific waste management instruments. One topic covered in 

this plan is the Green Economy, which has policies that point to a circular economy. The 

circular economy proposes that the waste generated in a production/consumption process 

should recirculate as input in the same or another process.  

Complementarily Portugal also established specific strategic plans according to 

the source of waste. The Plano Estratégico dos Resíduos Agrícolas (Strategic Plan on 
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Agricultural Solid Waste) should be the one to cover plans for agricultural waste; 

however, it is still being developed. Thus, the Plano Estratégico dos Resíduos Industriais 

(Strategic Plan on Industrial Solid Waste), approved by Decree-Law nº 89/2002 

(Portugal, 2002), includes agricultural waste in its scope but does not mention agro-

industrial solid waste not once.  

According to the European Commission (2018), waste management means “the 

collection, transport, recovery (including sorting), and disposal of waste, including the 

supervision of such operations and the after-care of disposal sites, and actions taken as a 

dealer or broker”. It also mentions it as an essential process that should be improved and 

transformed into sustainable material management, ensuring prudent, efficient, and 

rational utilization of natural resources, promoting the circular economy’s principles. 

Proper waste management shall follow a hierarchy or order of priority, as shown in the 

schematic pyramid in Figure 1, which consists of prevention, preparing for re-use, 

recycling, other recovery (energy), and final disposal environmentally appropriate 

(Brasil, 2010; European Union, 2008b; Portugal, 2011).  

 

 

Figure 1. Waste hierarchy (European Union, 2008b). 

 

Waste prevention is considered the most environmentally preferred strategy 

because it consists of non-production and reduced production, reducing waste at the 

source (European Union, 2008b). It can be done by buying in bulk, reducing packaging, 
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or redesigning products. Waste prevention may save natural resources, conserve energy, 

and reduce other types of pollution (e.g., air and water pollution).  

Preparing for re-use consists of re-use of products or components that are not 

waste for the same purpose they will be conceived, and it is also a source reduction 

(European Union, 2008b). It can be done by re-using plastic bags, jars, containers, etc., 

and donating old clothes and furniture. Re-use also may save natural resources, conserve 

energy, and reduce other types of pollution (e.g., air and water pollution).    

Recycling consists of recovery operations by which waste is reprocessed into 

products, materials, or substances, whether for the original or other purposes (European 

Union, 2008b). It also includes the recovery of organic matter (e.g., composting and 

producing carbonaceous materials from biomass). Recycling helps reduce the overall 

amount of waste sent for disposal and conserve natural resources by replacing the need 

for virgin materials (US EPA, 2009a). 

Other recovery consists mostly of energy recovery (European Union, 2008b). It 

includes converting materials into heat, electricity, or fuel through various processes, 

including combustion, gasification, pyrolization, anaerobic digestion, and landfill gas 

recovery (US EPA, 2009a).  

Final disposal consists of operations that are not recovery, even when the process 

has a secondary effect of substances or energy reclamation. The most common form of 

proper waste disposal is landfill. Methane gas, a byproduct of decomposing waste, can be 

collected and used as fuel to generate electricity. Another residue of decomposing waste 

is the leachate, which needs to be collected and treated (US EPA, 2009a). 

 

2.2 Carbonaceous adsorbents 

 

2.2.1 Carbonaceous materials 

 

A variety of light-weight, relatively low-cost, and environmentally friendly 

materials with various microtextures (powders, fibers, fabrics, foams, glassy carbon, and 

composites) contain carbon (Kurzweil, 2009). With multiple chemical bonding 

possibilities, carbon can be found in many allotropes. Diamond, graphite, nanotubes, and 

fullerenes are among the carbon-based materials (Nudrat et al., 2018).  
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AC, pyrochar, hydrochar, carbon black (furnace soot, thermal black), carbon 

fibers (polyacrylonitrile, phenol resin, pitch), glassy carbon (polymer-based), and carbon 

foam (nanomaterials, polymer-based) are examples of various materials composed of 

carbon. Most carbon materials’ key features are high surface area, tailored pore geometry, 

pore size distribution, wettability, and conductivity (Kurzweil, 2009). 

Carbonaceous materials have been widely used for capacitor electrodes in aqueous 

and aprotic solutions. Powdered graphitic materials usually conduct better than powdered 

amorphous carbon (e.g., activated carbons, biochar). Porous carbonaceous materials have 

been widely used in catalysis, energy storage (supercapacitors and Li-ion batteries), 

energy production (electrocatalysts or electrocatalyst support for fuel cells), gas storage 

(water (H2O), methane (CH4), carbon dioxide (CO2)) and the removal of contaminants 

(e.g., heavy metals, gaseous pollutants, dyes) (Sevilla & Fuertes, 2016).  

 

2.2.2 Adsorbent carbonaceous materials 

 

According to IUPAC (2015), adsorption is defined as the enrichment of 

molecules, atoms, or ions in an interface’s vicinity. In gas-solid systems, the interface 

material is a solid surface, called adsorbent, and the adsorption takes place in its surface, 

outside the solid structure. This general phenomenon occurs whenever an adsorbable gas 

(the adsorptive) is brought into contact with the surface of a solid (the adsorbent) and 

adsorbs in its surface (becoming the adsorbate). The adsorption space is the area occupied 

by the adsorbate. Adsorption can be physical (physisorption) or chemical (chemisorption) 

(Thommes et al., 2015). Physisorption is a physical adsorption attraction of an adsorbate 

to a surface, the outer surface, and the inner pore surface of an adsorbent by physical 

forces (Van der Waals forces) (CEN, 2014). Differently, in chemisorption, the adsorbate 

is trapped on the adsorbent surface due to the intermolecular forces involved in formatting 

chemical bonds (CEN, 2014; Thommes et al., 2015).  

In the context of physisorption, the pores are defined according to their size as 

follows (Porada et al., 2013; Thommes et al., 2015): 

(i) Macropores are the ones with widths greater than about 50 nm; 

(ii) Mesopores are the ones with widths between 2 nm and 50 nm; 

(iii) Micropores are the ones with widths less than about 2 nm; 
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A carbonaceous adsorbent is represented in Figure 2, showing its amorphous 

form, the porous structure with the adsorbate on it, and its aromatic clusters. 

 

 

 Figure 2. Representation of a carbonaceous adsorbent: (a) amorphous form; (b) porous 
structure with adsorbate; (c) aromatic clusters.  

Based on Celzard et al. (2007). 
 

Adsorbents can be prepared by thermal decomposition of the material, eliminating 

non-carbon species and producing a fixed carbon mass with a rudimentary pore structure 

composed of fine and closed pores. The adsorbent can be activated via chemical or 

physical means to enlarge the pores’ diameters and create new pores (Hu et al., 2001). 

 

2.2.2.1 Bioadsorbents 

 

Nearly all biological materials (e.g., microbial cells, plant and animal biomass, 

organic waste sludge) have the capacity of pollutant removal/recovery (Safarik et al., 

2018). When dead biomass is used in the adsorption of pollutants, they are called 

bioadsorbents (Fomina et al., 2014). Biosorption is a physicochemical process in which 

low-cost raw biomass acts as adsorbent (Safarik et al., 2018). Functional groups located 

on the surface of bioadsorbents play an essential role in the biosorption of pollutants due 

to their interaction with target pollutants (Safarik et al., 2018). Among the proper handling 

of exhausted bioadsorbent after the adsorption process is its regeneration and re-use in 

subsequent biosorption cycles; also, use it as a precursor to producing pyrochars by 

pyrolysis (Baldikova et al., 2019). 
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2.2.2.2 Pyrochars 

 

Thermo-chemical processes, such as pyrolysis, are applied to produce char, oil, or 

gaseous product from biomass. Pyrolysis consists of the organic raw material’s 

carbonization in an inert atmosphere (Yek et al., 2019). The thermal treatment dehydrates 

and devolatilizes the biomass during carbonization, resulting in a remaining solid char 

with high-carbon content, high porosity, large surface area, and high pore volumes, 

usually called pyrochar (Ioannidou et al., 2007; Lam et al., 2018; Lehmann et al., 2009; 

Mohamed et al., 2010).  

The key parameters controlling the pyrochar properties during the pyrolysis 

process are temperature, followed by pyrolysis heating rate, nitrogen flow rate (used as 

the carbonizing agent), pyrolysis residence time, and feedstock type (Ahmad et al., 2014; 

Chen et al., 2017; Ioannidou et al., 2007; Mohamed et al., 2010).  

Pyrolysis processing of biomass enlarges the crystallites and makes them more 

ordered, an effect that increases under high temperatures (Lehmann et al., 2009). As 

reported by Chen et al. (2017), the biomass is converted into a “3D network of benzene 

rings” with plenty of functional groups at temperatures below 500 o C during the pyrolysis 

process. At temperatures between 500o C and 700o C, it is transformed into a “2D structure 

of fused rings” with abundant porosity. At temperatures higher than 700 o C, it may transit 

into a “graphite microcrystalline structure”. The surface area of the biomass char 

dramatically increases from 400 to 900 o C. Figure 3 presents a schematic of pyrochar 

structure development under many temperature ranges.  
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Figure 3. Schematic of pyrochar structure development under many temperature ranges 
(Lehmann et al., 2009).  

 

Pyrochar has been used as a soil amendment (to increase soil health and 

productivity sustainably and a tool for atmospheric carbon dioxide sequestration in soils), 

biofuel, catalytic support, and adsorbent (Alhashimi & Aktas, 2017; Daramola et al., 

2020; Lehmann et al., 2009). It has received recognition in diverse applications in recent 

years due to its adsorption properties (Alhashimi et al., 2017). Pyrochars obtained in 

relatively high pyrolysis temperatures usually present high surface area, good 

microporosity, and hydrophobicity, potentially useful in the sorption of organic 

contaminants. In contrast, pyrochars that are effective in the sorption of inorganic/polar 

organic contaminants are usually obtained in relatively low pyrolysis temperatures (<= 

500 ºC), presenting more oxygen-containing functional groups, electrostatic attraction, 

and precipitation (Ahmad et al., 2014).  

As reported by Alhashimi & Aktas (2017), it is essential to investigate the 

environmental and economic impact perspective of pyrochar compared to alternative 

materials such as AC, presented in detail below. The same authors reported that pyrochars 

have lower environmental impacts than activated carbons. If engineered correctly for the 

specific application, they could be as efficient as activated carbon and less expensive. 

Nevertheless, significant gases are released during the pyrolysis process. In the case of 

pyrolysis of OS, Blanco López et al. (2002) mentioned CO, CO2, CH4, ethylene, ethane, 

and hydrogen as gases produced during this process, among which CO and CO2 are the 

main ones.  
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2.2.2.3 Hydrochars 

 

The hydrochar is a material obtained by HTC. It is another thermochemical 

process, which uses water, heat (range of 150 to 350 oC), and high pressure to convert 

biomass into carbonaceous materials through fractionation of the feedstock (Daramola et 

al., 2020; Jain et al., 2016; Lehmann et al., 2009; Ok et al., 2016). This process is 

considered a promising waste conversion technique by converting waste into value-added 

products. It presents the advantages to allow the use of high moisture-containing 

feedstock without requiring a pre-drying step and to do not generate any hazardous 

chemical waste or byproducts when performed only with water (Bruckman, 2016; Ok et 

al., 2016). HTC and pyrolysis are two of the most frequently used processes to prepare 

carbonaceous materials, with high adsorption capacity, from agriculture residues (Ok et 

al., 2016).  

In HTC, due to temperature, steam is formed, and the pressure rises, leading to a 

thermo-chemical transformation of biomass (Daramola et al., 2020). Water acts as a 

solvent and a catalyst facilitating efficient hydrolysis and the partition of the 

lignocellulosic material (Jain et al., 2016). The hemicellulose content in biomass partly 

undergoes hydrolysis at lower temperatures and results in the formation of hydrochar 

through polymerization (water solubility homogenous reaction) (Jain et al., 2016). 

HTC method has received growing attention due to its simplicity and ability to 

deliver hydrochar with many oxygenated functional groups (OFGs) (Jain et al., 2016; Ok 

et al., 2016). It is considered more environmentally sound because it usually does not 

generate hazardous outputs, as does dry pyrolysis. Besides, HTC requires less energy, 

implying economic benefits as well. Figure 4 illustrates the formation of OFGs by HTC.  

 

 

Figure 4. Hydrochar formation by hydrothermal carbonization (HTC) (Jain et al., 2016). 
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2.2.2.4 Activated carbons  

 

According to the IUPAC, AC is “a porous carbon material, a char which has been 

subjected to reaction with gases, sometimes with the addition of chemicals, before, during 

or after carbonization in order to increase its adsorptive properties” (IUPAC, 1997). The 

U.S Environmental Protection Agency describes AC as “a highly adsorbent form of 

carbon used to remove odors and toxic substances from liquid or gaseous emissions…” 

(US EPA, 2009b). AC consists of macrostructures formed by flat aromatic sheets, broken 

in places by slit-formed pores, and cross-linked amorphous carbon that defines cylindrical 

pores by its accidental orientation (Kurzweil, 2009; Shen et al., 2018). The main 

distinctions between pyrochar and AC are that activation is not performed during 

pyrochar production while it is crucial for AC production; also, the processes’ 

temperatures are usually different (Zhang et al., 2017). 

AC is used to treat liquids and gases, and it generally has a large adsorption 

capacity, preferably for small molecules, because of its high pore volume and surface 

area. The adsorption of compounds by AC is a complex process that depends on a wide 

range of variables, including adsorbent properties, the nature of the adsorbate, operating 

conditions (relative humidity, temperature, pressure, and volumetric flow rate), and the 

presence of adsorption competition (Le-Minh et al., 2018). 

An assortment of ACs having distinct porosity can be obtained by controlling 

activation and carbonization processes. This carbonaceous material is used generally in 

granular and powdered forms but can also be found in textile form prepared by controlled 

carbonization and activation of carbon fiber textiles (IUPAC, 1997).  

According to Mohd Din et al. (2009), biomass can be converted into AC via 

chemical, physical, or physiochemical (a combination of the previous methods) 

activation. 

The physical activation methods mostly involve carbonization of the biomass at 

temperatures below 700 °C, followed by controlled gasification of the char at higher 

temperatures in a stream of oxidizing with the activating agents steam (CO2, air, NH3, O2, 

or any mixture of these gases), without the presence of a chemical catalyst (Alslaibi et al., 

2013; Chen et al., 2017; Hu et al., 2001). In this type of activation, the raw material is 

carbonized at first, then volatile compounds are removed, and oxidation sites are created. 
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The process results in increased aromatic cross-linked sheets, and carbon layers are 

removed by controlled oxidation. The activation process progress depends on the oxygen 

added to the steam. High temperatures, long residence times, and favorable oxidizing 

conditions result in larger micropores and small mesopores (Kurzweil, 2009). 

The chemical activation is performed by the chemical treatment of the 

lignocellulosic material, in which the cellulose structures are destroyed, followed by 

carbonization and aromatization of the carbon skeleton (Kurzweil, 2009). At the 

beginning of the process, a chemical agent is added, followed by heat treatment, generally 

in the 450-900 oC range, of the impregnated material under an inert atmosphere to form 

the final porous structure known as AC (Mohamed et al., 2010; Sevilla & Mokaya, 2014). 

The activating agents of chemical activation consist of acids (mostly phosphoric acid, 

H2SO4, and nitric acid); alkalis (mainly potassium hydroxide (KOH), sodium hydroxide); 

and salts (mostly zinc chloride (ZnCl2), magnesium chloride, potassium carbonate) (Chen 

et al., 2017; Mohamed et al., 2010; Sevilla et al., 2014). Finally, the product is washed to 

remove and recover the excess of the activation agent (Kurzweil, 2009). Chemical 

activation may retain an abundant distribution of surface functional groups originated 

from a precursor, which could be effective for polar pollutants, such as NH3 (Zheng et al., 

2016). 

The main advantages of chemical activation over physical activation are: (i) 

relatively low energy cost due to lower pyrolysis temperatures; (ii) much higher carbon 

yield is obtained; (iii) adsorbents with a very high surface area can be produced, and (iv) 

the microporosity can be well developed, controlled and tailored to be narrowly 

distributed  (Hu et al., 2001; Sevilla et al., 2014).   

Hydrochars are frequently used as precursors of ACs, as shown the Figure 5. As 

described in the previous topic, HTC results in efficient hydrolysis and dehydration of 

biomass and bestows the hydrochar with high OFGs content, making it a suitable 

precursor to produce chemically activated carbon. 
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Figure 5. Preparation of AC by HTC, followed by chemical activation (Jain et al., 2016). 

 

As reported by Yang & Lua (2003), activated carbons’ chemical nature influences 

its adsorptive, electrochemical, catalytic, and other properties. Predominantly, activated 

carbons with acidic surface chemical properties are favorable for alkaline gas adsorption, 

while activated carbons with basic surface chemical properties are suitable for acidic gas 

adsorption. 

Physiochemical activation mainly happened at high temperatures in the presence 

of dehydrating agents (e.g., KOH, ZnCl2, H2SO4) and of oxidizing agents such as 

CO2/steam to provide further gasification effect (Alslaibi et al., 2013; Din et al., 2009). 

 

2.2.3 Adsorbents derived from biomass 

 

The solid biomass is available in different forms, with variable moisture contents 

and chemical elements, including agricultural and forestry residues, biological materials 

byproducts, wood, organic parts of municipal, and sludge waste (Sansaniwal et al., 2017). 

The various agricultural biomass wastes are among the most abundant, accessible, and 

renewable resources used to produce carbonaceous adsorbents, such as bioadsorbents, 

pyrochars, hydrochars, and ACs (Javidi Alsadi & Esfandiari, 2019).   

The production of adsorbents using lignocellulosic materials as precursors has 

attracted much attention due to the high cost of producing adsorbents from coal, not to 

mention it is a non-renewable resource. Practically all lignocellulosic materials can be 

used as feedstock to produce applicable adsorbents. The use of a suitable precursor is 

mainly conditioned by its availability and cost, although it also depends on the 

manufactured carbon’s particular applications and the type of installation available. The 
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big challenge in this field of study is to find cheap and efficient feedstock to produce 

adsorbents (Uçar et al., 2009).  

According to recent scientific literature, many agricultural biomass wastes are 

being used as precursors to produce adsorbent materials; most of them are ACs. Many 

feedstocks are being physically and chemically activated using different activation 

agents, as reported by González-García (2018) in his scientific literature review. Table 3 

and Table 4 present plenty of AC prepared from lignocellulosic precursors and their 

respective surface areas after the physical or chemical activations.  

 

Table 3. Surface area values (m2.g-1) for physically activated carbons (ACs) obtained from 
different lignocellulosic precursors. Adapted from González-García (2018). 

Precursor 
Activation  

agent 

BET 
Surface  
area 

 
Precursor 

Activation  
agent 

BET 
Surface  
area 

Cellulose thermal  2,602  
 Palm kernel  

shells 
CO2  912  

Bamboo thermal  2,169   Hemp steam  877  

Chicken 
droppings 

thermal  1,618  
 

Abaca steam  860  

Kapok CO2  1,474  
 Almond 

shell 
CO2  851  

Date pits steam  1,467   Jute steam  840  

Olive Stone CO2  1,355   Coir steam  822  

Kenaf CO2  1,352   Olive stone steam  813  

Oil cake/walnut CO2  1,207   Olive stones steam  807  

Guava seeds 
80% CO2,  
20% H2O 

 1,201  
 

Walnut shell steam  792  

Oil-palm shells thermal  1,182   Fax steam  776  

Vine shoots CO2  1,173  
 Peanut 

shells 
steam  757  

Agave Sisalana CO2  1,140   Cornstarch thermal  686  

Almond shell CO2  1,138  
 Almond 

shell 
steam  601  

Rice steam  1,122   Finish wood CO2  590  

Rice steam  1,111   Cocoa shell  CO2  558  

Almond tree  
pruning 

steam  1,080  
 

Nutshells CO2  485  

      (continued) 
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Table 3. Surface area values (m2.g-1) for physically activated carbons (ACs) obtained from 
different lignocellulosic precursors. Adapted from González-García (2018). 

Precursor 
Activation  

agent 

BET 
Surface  
area 

 
Precursor 

Activation  
agent 

BET 
Surface  
area 

Dinde stones 
80% CO2,  
20% H2O 

 1,074  
 Sunflower 

stem 
CO2  438  

Rapeseed CO2  1,036   Olive stone CO2  438  

Crofton weed CO2  1,036  
 Walnut 

shells 
CO2  379  

Tropical almond 
shells 

80% CO2,  
20% H2O 

 1,029  
 

Grape stalks steam  300  

pistachio-nut 
shells 

CO2  1,014  
 Eucalyptus 

sawdust 
CO2  298  

Oil-palm shells thermal  988  
 Grape 

pomace 
steam  266  

Olive Stone steam  950  
 Sugar cane 

bagasse 
CO2  260  

Moringa oleífera steam  932   Palm kernel CO2  167  
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Table 4. Surface area values (m2.g-1) for chemically activated carbons (ACs) obtained from different lignocellulosic precursors.  
Adapted from González-García (2018). 

Precursor 
Activation 
agent 

BET 
Surface  
area 

 
Precursor 

Activation  
agent 

BET 
Surface  
area 

 
Precursor 

Activation  
agent 

BET  
Surface  
area 

Enteromorpha 
prolifera 

KOH  3,332  
 

Chinese fir H3PO4  1,589  
 

Licorice residue 
and pistachio-nut 
shell mixture 

H3PO4  1,017  
Rice KOH  3,263   Willow catkins KOH  1,586   

Eucalyptus wood NaOH  3,167   Pomelo KOH  1,533   

Corncob KOH  3,054   Pine K2CO3  1,509   Olive stones H3PO4  1,014  

Beechwood NaOH  2,835   
Licorice residue 
and pistachio-nut 
shell mixture 

ZnCl2  1,492  

 Apple pulp H3PO4  1,004  

Chinese fir H3PO4  2,518  
  Choerospondias 

axillaris 
NaOH  1,002  

Carrageenan KOH  2,502    Olive stones H3PO4  990  

Flamboyant pods NaOH  2,463   Paulownia flower KOH  1,471   Wheat straw NaOH  970  

Beechwood KOH  2,460   Barley ZnCl2  1,445   Corncobs H3PO4  960  

Flax ZnCl2  2,450   Peach stones ZnCl2  1,425   Stem of date palm KOH  947  

Coconut shells ZnCl2  2,450  
 

Pine nutshell CaHPO5  1,418  
 Posidonia 

oceánica 
H3PO4  946  

Eucalyptus Wood NaOH  2,415  
 

Waste tea H3PO4  1,398  
 Oil palm empty 

fruit bunch 
H2SO4  928  

Hemp ZnCl2  2,250  
 Enteromorpha 

prolifera 
NaAlO2  1,374  

 
Pineapple ZnCl2  915  

Pine nutshell KOH  2,207   Soybean oil cake K2CO3  1,353   Coir pith ZnCl2  910  

Rye straw KOH  2,200   Orange ZnCl2  1,353   Coffee endocarp KOH  893  

Cannabis sativa KOH  2,192   Cotton stalks KOH  1,311   Coffee ZnCl2  890  

   
 

   
 

  
 
(continued) 
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Table 4. Surface area values (m2.g-1) for chemically activated carbons (ACs) obtained from different lignocellulosic precursors.  
Adapted from González-García (2018). 

Precursor 
Activation 
agent 

BET 
Surface  
area 

 
Precursor 

Activation 
agent 

BET 
Surface  
area 

 
Precursor 

Activation 
agent 

BET 
Surface  
area 

Peach stone FePO4  2,160   Jatropha wood  KOH  1,305   Chestnut H3PO4  783  

Eucalyptus Wood KOH  2,120   Vetch  ZnCl2  1,287   Date pits FeCl3  780  

Agar KOH  2,118   Agave bagasse ZnCl2  1,281   Corncob ZnCl2  767  

Banana KOH  2,086  
 

Hemp HNO3  1,250  
 Posidonia 

oceánica 
KOH  762  

Starch-rich banana H3PO4  2,068   Peanut Shell K2CO3/Fe3O4  1,236   Peanut shells H3PO4  751  

Coconut shells H2O2/ZnCl2  2,050   Peach stones H3PO4  1,225   Palm kernel shell KOH  727  

Eucalyptus wood KOH  2,000  
 Phoenix 

dactylifera L 
H3PO4  1,225  

 
Starch KOH  714  

Gelatin KOH  1,957  
 

Orange K2CO3  1,215  
 Elaeagnus 

angustifolia seed 
ZnCl2  697  

Pistachio shell FePO4  1,919   Sky fruit husk H3PO4  1,211   Coffee H3PO4  696  

Chinese fir H3PO4  1,910   Flax H3PO4  1,200   Sisal ZnCl2  616  

Wood apple shell H2SO4  1,898   Tabacco HNO3  1,104   Olive stones KOH  587  

Olives stones ZnCl2  1,860   Stem of date palm H3PO4  1,100   Coir fiber ZnCl2  540  

Grape seeds KOH  1,860   Date stones H3PO4  1,100   Coconut pith KOH  505  

Albizia lebbeck KOH  1,824  
 

Pinus sylvestris H3PO4  1,093  
 Posidonia 

oceánica 
ZnCl2  503  

Agave Sisalana ZnCl2  1,765  
 

Agave Sisalana H3PO4  1,086  
 Leaves of  

Carnauba palm 
CaCl2  431  

   
 

   
 

  
 
(continued) 
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Table 4. Surface area values (m2.g-1) for chemically activated carbons (ACs) obtained from different lignocellulosic precursors.  
Adapted from González-García (2018). 

Precursor 
Activation 
agent 

BET 
Surface  
area 

 
Precursor 

Activation 
agent 

BET 
Surface  
area 

 
Precursor 

Activation 
agent 

BET 
Surface  
area 

Apricot and  
Peach stones 

H3PO4  1,740  
 

Euphorbia rigida K2CO3  1,079  
 

Plum kernel H3PO4  417  

Waste tea K2CO3  1,722  
 Arundo donax 

Linn 
KOH  1,065  

 
 Jacaranda H3PO4  326  

Hazelnut shells KOH  1,700  
 

Corkboard KOH  1,065  
 Posidonia 

oceánica 
H2O2  60  

Prosopis ruscifolia H3PO4  1,638   Orange H3PO4  1,056   Palm flower H2SO4  10  

Oil palm shell KOH  1,630  
 

Potato waste ZnCl2  1,052  
 Opuntia ficus 

indica 
HNO3  5  
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2.2.4 Regeneration of adsorbents 

 

Once the carbonaceous adsorbent is saturated, it is generally discarded (e.g., 

disposal in landfills/incineration) (Gamal et al., 2018). Regeneration of saturated 

adsorbents plays an essential role in environmental and economic spheres, as it may 

increase the adsorbent’s lifespan, maximizing its re-use (Han et al., 2014; Sun et al., 

2017).  

Various methods have been used to regenerate adsorbents, including chemical, 

electrochemical, microwave, advanced oxidation treatments, and thermal, being the last 

one the most used in industry (Do et al., 2011; Ro et al., 2015). The thermal regeneration 

process requires high capital and energy consumption (Ro et al., 2015). A convenient 

regeneration process should be adopted considering the adsorbate's nature and process's 

cost and conditions (Gamal et al., 2018). The regeneration by itself is beneficial to the 

environment; however, environmentally sound regeneration techniques should be 

developed/improved (Sun et al., 2017). 

Ro et al. (2015) proposed an environmentally sound method to regenerate 

pyrochar saturated with NH3 only using water. This method was justified by the high 

solubility of NH3 in water. It was found that the adsorption capacities of first-generation 

and regenerated pyrochars were very similar, suggesting the potential of regenerating 

saturated pyrochar only by using water. Another potential advantage of the process 

mentioned above, from environmental and economic perspectives, is that the nitrogen 

adsorbed in carbonaceous materials may be desorbed in an aqueous solution and be used 

as raw material for fertilizers (Amaral et al., 2016; Melenová et al., 2003). 

 

2.3 Odorous air emissions 

 

2.3.1 Pollutants and sources of pollution 

 

Air pollution is defined by the U.S. Environmental Protection Agency as "the 

presence of contaminants or pollutant substances in the air that interfere with human 

health or welfare, or produce other harmful environmental effects" (US EPA, 2009b). 

According to the World Health Organization, air pollution — both ambient (outdoor) and 

household (indoor) — represents the leading environmental risk to human health, 
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accounting for about one in every nine human deaths annually (WHO, 2016). In 2016, 

seven million deaths worldwide were attributed to the effects of ambient and indoor air 

pollution (WHO, 2018). The negative impacts of air pollution bring significant effects 

under social and economic perspectives. Among the more significant are: greater 

vulnerability of the disadvantaged population, increase in the cost of the health system 

due to the hospital admission, and decline in agriculture productivity (IEMA, 2014). 

Air pollutants consist of gaseous and particle contaminants present in the 

atmosphere responsible for deteriorating air quality (Saxena & Naik, 2019; US EPA, 

2019). Gaseous pollutants include NOx, SO2, CO, NH3, H2S, VOCs — organic 

compounds with vapor pressure high enough to be vaporized into the atmosphere under 

normal conditions —, ozone (O3), other toxic air pollutants, and some gaseous forms of 

metals (Saxena et al., 2019; US EPA, 2019). Particulate pollutants are frequently divided 

into particulate matter PM2.5 and PM10, which represent airborne particles of equivalent 

aerodynamic diameter less than 2.5 and 10 µm, respectively, and includes a mixture of 

compounds that can be grouped into five main categories: sulfate, nitrate, elemental 

(black) carbon, organic carbon and crustal material (US EPA, 2019). There are also the 

bioaerosols, which are microorganisms and other biological substances (Vallero, 2019b). 

Some of the air pollutants are odorous. Environmental odors are usually complex 

mixtures of pollutants whose components are challenging to identify and quantify and 

vary between sources (Artiola et al., 2019; Le-Minh et al., 2018). The odor threshold is 

the minimum odor of an air sample detected by human olfaction (US EPA, 2009b). The 

concentrations of the odorous compounds are usually very low, but their olfactory 

thresholds are, in some cases, lower (Fang et al., 2012). The human nose is a sensitive 

detector of odorous compounds able to detect odor concentrations below the detection 

limit of some measuring equipment (Fang et al., 2012).  

Odors can cause various undesirable reactions in humans, from annoyance to 

documented health consequences (Nicell, 2009). For example, VOCs can be absorbed 

through the airways, skin, and digestive tract, causing respiratory tract irritation and 

damage to the central nervous system and liver (Gil et al., 2014). Although there may be 

no immediately apparent disease or infirmity in communities exposed to odor emissions, 

there is undoubtedly no atmosphere of complete mental, social or physical well-being in 

these places (Nicell, 2009).  
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In 2005, odor pollution was identified as the second motive of environmental 

complaints in Europe, after noise (ADEME, 2005). According to Balestrini et al. (2018), 

based on community complaints reported from 2011 to 2019, industrial and agricultural 

activities and waste and wastewater treatment facilities account for 78% of odor sources 

across European countries. In Portugal, 100% of the odor sources are related to the 

activities/facilities presented above. 

The proportions presented above point to the need to give attention to prevent and 

control the occurrence of odor problems in communities surrounded by those activities. 

The occurrence of odor problems in communities may threaten the health and the well-

being of the population and impair the regular use of their properties. To safeguard the 

people's well-being, it is essential that industries and other operations that verge on odor 

emissions, being required to comply with an appropriate assessment and regulation of 

odor impacts with the implementation of technologies for the prevention and control of 

odorous gas emissions (Nicell, 2009). 

Despite contributing to proper waste management, landfill facilities and organic 

waste treatment plants typically are sources of odor pollution, as shown above (Rincón et 

al., 2019). Generally, leachate contains high concentrations of ammoniacal nitrogen in 

both states, ionic state (NH4
+) and free gaseous ammonia (NH3) (Amaral et al., 2016). A 

study carried out by Cheng et al. (2019) showed that H2S, benzene, and NH3 were the 

critical priority odorants for landfill facilities, while for organic waste treatment plants 

were NH3, ethyl acetate, and benzene. Both waste treatment facilities have NH3 as one of 

the most critical offensive odorants, which should be considered on health risk 

assessment.  

NH3 is considered the most abundant alkaline gas in the atmosphere and a relevant 

air pollutant responsible for negative environmental impacts  (Behera & Sharma, 2012; 

Wang et al., 2015). It not only contributes to eutrophication and acidification of 

ecosystems but also plays a fundamental role in fine particulate matter (PM2.5) formation 

by reacting with acidic species to form ammonium-containing aerosols (ammonium 

sulfate ((NH4)2SO4), ammonium bisulfate, ammonium nitrate, and ammonium chloride), 

which compose a substantial fraction of PM2.5 (Behera et al., 2012; Wang et al., 2015; 

Wu et al., 2016). In human space flights, NH3 could be emitted from urine or refrigeration 

system leaks, presenting a health risk to astronauts, such as eye irritation and headache, 
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so NASA gave the following maximum allowable concentrations for this pollutant: 20 

ppm for a 24 h exposure and 3 ppm for a 7 days exposure (NASA, 2020). 

The following table (Table 5) shows some of the main odorous compounds and 

their odor characteristics and detection thresholds.  
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Table 5. Characteristics and detection thresholds of the main odoriferous compounds.  
Adapted from Le Cloirec & Perrin (1994) and Van Gemert (2011). 

Compound Type IUPAC Name  
Molar Mass 
(g mol-1) 

Chemical  
Formula 

Odor 
Characteristics 

Odor threshold  
(mg Nm-3) 

Sulfurous 

Hydrogen sulfide 34.08  H2S Rotten egg 0.0001-0.03 

Methanethiol 48.11 CH4S Cabbage, garlic 0.0005–0.08 

Ethanethiol 62.10 C2H6S Rotten cabbage 0.0001–0.03 

(Methylsulfanyl)methane 62.13 C2H6S Rotten vegetables 0.0025–0.65 

1,1-Thiobisethane 90.19 C4H10S Ethereal 0.0045–0.31 

(Methyldisulfanyl)methane 94.19 C2H6S2 Putrid 0.003–0.014 

Nitrogenous 

Ammonia 17.03 NH3 Very poignant, annoying 0.04–37 

Methanamine 31.06 CH5N Rotten fish 0.02 

Ethanamine 45.09 C2H7N Poignant, ammoniacal 0.05–0.83 

N-Methylmethanamine 45.09 (CH3)2NH Rotten fish 0.047–0.16 

3-Methyl-1H-indole 131.18 C9H9N Faecal, nauseating 0.0008–0.10 

Acids 

Acetic acid 60.05 C2H4O2 Vinegar 0.025–6.5 
Butanoic acid 88.11 C3H7COOH Rancid butter 0.0004–3 

Pentanoic acid 102.13 C4H10O2 Sweet 0.0008–1.3 

Aldehydes & Ketones 

Formaldehyde 30.03 CH2O Acrid, suffocating 0.033–12 

Acetaldehyde 44.05 C2H4O Fruity, apple 0.04–1.8 

Butanal 72.11 C4H8O Rancid 0.013–15 

3-methylbutyraldehyde 86.13 C5H10O Fruity, apple 0.07 

Propan-2-one 58.08 C3H6O Sweet, fruity 1.1–240 
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2.3.2 Measuring, prevention, and control  

 

Public health has been the principal driver for assessing and controlling air 

contaminants. Air pollution abatement laws and programs worldwide have also 

recognized the importance of welfare protection on air pollution prevention and control. 

According to Vallero (2019a), the central goal has been to decrease health harm, and the 

metric for harm is the risk. The health risk from an air pollutant is proportional to the 

exposure, which is the amount of pollutant reaching a person. The activities that are 

undertaken in different locations and the time spent are essential determinants of air 

pollution exposure. 

Air quality monitoring is performed to estimate air pollutants' ambient 

concentrations at various locations. However, most people spend most of their time 

indoors, with distinctions among ambient, indoor, and personal-scale exposures (Vallero, 

2019a). Therefore, due to the long period that humans spend indoors, it is indispensable 

to care about indoor air quality. So, air cleaning, which, by definition, is an indoor-air 

quality-control strategy to remove various air particulates and gases from the air, is a 

crucial tool to be applied (US EPA, 2009b). 

Odor assessment can be performed by objective chemical analytical measurement 

and subjective olfactory analysis (human perception). The two types of evaluations are 

complementary and should be undertaken jointly for a complete assessment of negative 

odor impacts (Jiang et al., 2017). The objective assessment is critical for the quantitative 

characterization of odor composition (Jiang et al., 2017). In contrast, the subjective 

evaluation is an essential tool to assess the odor abatement efficiency of a gas cleaning 

system according to its ability to reduce the intensity and improve the hedonic odor tone 

of a gaseous effluent (VDI, 1992b). 

The olfactory analysis can be done by dynamic olfactometry, which uses a panel 

of human assessors being the sensor (CEN, 2003). In 2003 the European Committee for 

Standardization released a final odor testing standard entitled EN 13725: “Air Quality-

Determination of Odor Concentration by Dynamic Olfactometry” (CEN, 2003), which 

follows ISO quality assurance and scientific testing protocols. This standard unified the 

olfactometry standards of 18 countries: Austria, Belgium, Denmark, Finland, France, 

Greece, Germany, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, 
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Spain, Sweden, Switzerland, and the United Kingdom). It is worth mentioning that EN 

13725:2003 only refers to dynamic olfactometry to measure odor concentration (Capelli 

et al., 2019). Nonetheless, dynamic olfactometry can also be applied for the determination 

of odor intensity and odor pleasantness/unpleasantness (hedonic tone), which are 

subjective parameters, as described in German guidelines VDI 3882 Part 1 and VDI 3882 

Part 2 (Capelli et al., 2019; VDI, 1992a, 1992b).   

For this reason, subjective assessment is fundamental as human odor perception 

is the ultimate criterion of the effectiveness of a mitigation measure for odor emissions. 

Both objective and subjective methods can help design, operate, and optimize different 

odor abatement systems (Jiang et al., 2017). 

Air pollution managers and engineers are increasingly applying systems thinking 

and looking for more sustainable approaches (Vallero, 2019a). The technologies for 

odorous gas treatment can be classified into physical/chemical and biological methods. 

Adsorption and chemical scrubbers are among the physical/chemical processes, while 

biofilters, biotrickling filters, bioscrubbers, and activated sludge diffusion reactors are 

biological techniques for odor control (Ren et al., 2019).  

Adsorbents are generally considered useful for small, decentralized applications, 

typical in environmental odor emissions, where robust technology with low routine 

maintenance and operating staff intervention is required (Le-Minh et al., 2018). 

 

2.3.3 Adsorption of gaseous odorous pollutants 

 

Carbonaceous materials with good porosity and numerous functional groups can 

work well as sorbents of gas pollutants. Concerning removing NH3, the presence of an 

acidic oxygenated surface could be the decisive factor of the adsorption capacity of NH3 

and regeneration efficiency of the adsorbent (Gonçalves et al., 2011; Zheng et al., 2016). 

On the other hand, surface area and pore volume do not directly control gaseous NH3 

adsorption (C. Huang et al., 2008; Ro et al., 2015); however, a regular and interlinked 

pore system is also a crucial factor to NH3 adsorption (Yeom & Kim, 2017). The 

correlation between the amount of NH3 adsorbed and the total amount of acidic groups 

on the adsorbent surface is approximately linear (Gonçalves et al., 2011; C. Huang et al., 

2008; Zheng et al., 2016). It was found that water has a fundamental role in the formation 
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of NH4
+ ions, essential for the adsorption through interaction with the Brønsted acid 

groups of the surface of the adsorbent (Gonçalves et al., 2011). As presented by Chou et 

al. (2006), reactive adsorption of gaseous NH3 in carbonaceous materials impregnated 

with H2SO4 occurs according to Equations 1 and 2 and is explained below: 

 

  NH3(g) + H2O (l) → NH4OH (aq)   (1) 

 

 2NH4OH (aq) + H2SO4 (aq) → (NH4)2SO4(aq) + 2H2O (l) (2) 

 

NH3 is transported from the gas stream to the surface of the adsorbent. NH3 reacts 

with water and subsequently with H2SO4 to form (NH4)2SO4, which remains on the 

adsorbent (Amaral et al., 2016). Generally, in typical physical adsorptions, moisture 

competes with NH3, resulting in the reduction of adsorption capacity of the adsorbent, but 

in the reactive adsorption of NH3 by using adsorbents impregnated with H2SO4, moisture 

is a crucial component in the reaction (Chou et al., 2006; Le Leuch & Bandosz, 2007), as 

shown in Equation 1. 

The adsorption of gaseous pollutants occurs as explained below when it runs in 

continuous mode in a fixed-bed column. The polluted gas is injected at the adsorption 

column entrance packed with a fixed bed of adsorbent particles and passes through the 

column. As the pollutants are adsorbed in the bed, cleaned gas is produced at the column 

exit. The removal of contaminants decreases over time because of the adsorbent's limited 

adsorption capacity (Tan & Hameed, 2017). Many parameters influence adsorption, being 

the key ones: initial concentration of adsorbate (Co), flow rate, bed height, pH, the particle 

size of adsorbent, and temperature (Patel, 2019). An outstanding adsorption system 

design involves investigating the breakthrough curve (effluent’ pollutant concentration 

vs. time of adsorption), which indicates the pollutant mass balance in the system (Ang et 

al., 2020). 

Figure 6 shows a typical ideal fixed bed dynamic behavior in which gas is injected 

at a constant concentration of a particular pollutant at the column entrance. According to 

Tan & Hameed (2017), the gray-colored zone is the mass transfer zone (MTZ) where 

adsorption occurs, and concentration varies axially. The MTZ moves along the fixed bed. 

The breakthrough occurs when the leading front of MTZ, called mass transfer front, 
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reaches the column exit so that the concentration of pollutants is greater than zero at the 

column exit (C/Co > 0), in such a manner that the effluent presents a specified 

concentration of the adsorbate of interest. It is worth mentioning that a bed whose depth 

is less than the height of MTZ will show the immediate appearance of pollutants, and a 

short height MTZ confers more efficiency to the adsorbent utilized (ASTM, 2019). The 

stoichiometric time is reached when the ratio between the effluent concentration 

(concentration of the pollutant at the column exit) and the feed concentration 

(concentration of the pollutant at the column entrance) is equal to 0.5 (C/Co = 0.5). The 

adsorption column's complete saturation occurs when C/Co is equal to 1, which means 

that the pollutant concentration at the column exit is approximately the same as the 

pollutant concentration at the column entrance. When the saturation is reached the column 

is no longer able to adsorb any pollutants. The curve plotted, which shows the 

concentration of pollutants at the column exit versus the time of the adsorption process, 

is named the breakthrough curve. The green area above the breakthrough curve represents 

the amount of pollutant adsorbed (Figure 6). 

 

 

Figure 6. Ideal breakthrough curve: fixed-bed dynamic behavior in which gas is injected at a 
constant concentration of a particular pollutant at the column entrance.  

Adapted from Ang et al. (2020) and Tan et al. (2017). 



Thalles Perdigão Lima 

39 
  
  

One of the most used and effective methods of controlling the emission of trace 

compounds in waste treatment plants’ off-gases is using the adsorption process, having 

AC as the primary adsorbent material used (Shin et al., 2002). AC is also extensively used 

as an adsorbent for odor control in wastewater treatment plants (Ren et al., 2019). Special 

attention has been given to the simultaneous removal of multi-component pollutant gases 

due to the efficiency and economic advantage (Chen et al., 2017).  

Most researches developed on odor adsorption only use isotherm models to 

estimate several odor compounds' adsorption capacities. It may not be sufficient to assess 

whether the adsorbents could effectively treat the odor problem due to the large gap 

among various odor compounds’ thresholds (X. Huang et al., 2019). 

 

2.3.4 Legal framework on odorous air emissions  

 

2.3.4.1 Brazilian approach  

 

The concern with the air quality was first mentioned in the Brazilian legislation 

back in 1981 through the Política Nacional do Meio Ambiente (National Policy Law for 

the Environment) established by the Law nº 6.938  (Brasil, 1981), of 31 August 1981, by 

including the rationalization of the use of air as one of its principle. Later the Programa 

de Controle de Poluição do Ar por Veículos Automotores (Motor Vehicle Air Pollution 

Control Program) – PROCONVE was established by Resolution CONAMA nº 18/1986  

(Brasil, 1986), of 6 May 1986. 

The Programa Nacional de Controle da Poluição do Ar – PRONAR was 

established by Resolution CONAMA nº 5/1989 (Brasil, 1989), of 15 June 1989. In the 

next year, Resolution CONAMA nº 3/1990 (Brasil, 1990), of 28 June 1990, was 

established, instituting the air quality standards in the PRONAR. The National 

Environment Council (CONAMA) recently published Resolution CONAMA no. 

491/2018 (Brasil, 2018), of 19 November 2018, an update on the air quality standards, 

which repealed and replaced the CONAMA Resolution no. 3/1990, and the items 2.2.1 

and 2.3 of the CONAMA Resolution no 5/1989. 
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In 2009 Brazil instituted the Política Nacional Sobre Mudança do Clima (National 

Policy on Climate Change) through Law no 12.187 (Brasil, 2009), of 29 December 2009, 

which made Brazil the first developing country to prepare a legal document on this matter. 

Odorous pollutants are not regulated in Brazil yet, so no federal legislation 

establishes acceptable odor emissions limits until now. However, local (state and 

municipal) environmental laws are useful for the environmental regulatory agencies in 

mediating conflicts between the population and those responsible for the odor sources 

(Vieira & Lisboa, 2013). There are state and municipal laws regarding the odor emissions 

in all Brazilian regions (north, northeast, central-west, southeast, south).  

The State of Paraná, through Resolution SEMA nº 041/2002 (repealed by the more 

recent Resolution SEMA nº 054/2006), was the pioneer in Brazil in regulating the odor 

emissions (Vieira et al., 2013). Resolution SEMA nº 054/2006 (Paraná, 2006), of 22 

December 2006, required that facilities with a high potential of odor emissions must have 

treatment systems with a minimum efficiency of 85% odor removal using olfactometry 

as a measurement method (based on American and European standards and 

recommendations). 

In the State of Minas Gerais, Regulatory Deliberation COPAM nº 187 (Minas 

Gerais, 2013), of 19 September 2013, established conditions and maximum emission 

levels of atmospheric pollutants of stationary sources. The Deliberation mentioned above 

presents that odorous gases derived from some specific activities/facilities that are 

potential sources (e.g., grains roasting, source of H2S and mercaptans, among others) 

must be incinerated at a minimum temperature of 800ºC or treated by another pollutant 

control system, with equal or higher efficiency. Despite those mentioned above, the 

regulation covers only a portion of activities/facilities that are a potential source of odors, 

not mention that known sources of odor are not specified (e.g., landfills, organic waste 

treatment plants, and wastewater treatment plants).  

In Minas Gerais, the city of Uberlândia stands out in terms of odor regulation to 

introduce concepts and definitions related to olfactometry and establish emission limits 

for some odoriferous compounds (Vieira et al., 2013). Decree nº 10.847 (Uberlândia, 

2007), of 10 September 2007, regulating the Article 126 of Complementary Law nº 

017/91, amended by Complementary Law nº 447/2007, establishes the policy of 

protection, control, and conservation of the environment and makes other provisions. The 
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Decree mentioned above establishes the obligation of activities that generate air pollution 

to present a Programa de Automonitoramento de Emissões Atmosféricas (Atmospheric 

Emissions Self-Monitoring Program). The Program must include the sources of odor 

emissions, characteristics of the odorous gases, control parameters, sampling 

methodologies, emission analysis, and schedules of actions and implementation of 

mechanisms that avoid, minimize, control, and monitor such emissions. Article 9 sets out 

that sampling and analysis of odorous emissions must be carried out following 

appropriate analytical methods (which includes the olfactometry) previously accepted by 

the competent municipal environmental agency. Article 10 sets out emission limits of 

sulfurous gases H₂S and C2H6S (4.7 x 10-4 and 3.0 x 10-3 ppm, respectively), but do not 

present limits for other known odorous gases (e.g., NH3). According to the decree 

mentioned above, for those odorous gases that do not cover Article 10, emission standards 

must comply with internationally recommended or accepted standards, not specified in 

the document.  

 

2.3.4.2 European and Portuguese approach  

 

The EU set pollutant concentrations thresholds that shall not be exceeded in a 

given period through air quality Directives 2008/50/EC (European Union, 2008a), of 21 

May 2008 (on Ambient Air Quality and Cleaner Air for Europe), and 2004/107/EC 

(European Union, 2004), of 15 December 2004 (on heavy metals and polycyclic aromatic 

hydrocarbons in ambient air). The first Portuguese legal document on air pollution 

emission control was Ordinance nº 286/1993 (Portugal, 1993), of 12 March 1993, which 

instituted the air quality standards to establish the emission limit values for SO2, PM, 

NO2, CO, Pb, and O3. Later, Decree-Law nº 78 (Portugal, 2004), of 03 April 2004, 

presented principles, objectives, and instruments to prevent and control air emissions. 

 The global increase of environmental regulations in the 1970s created the need to 

standardize odor measurement methods. Consequently, European countries, Australia, 

and the United States began to develop odor regulations. (McGinley & McGinley, 2001). 

Some EU countries have already adopted specific legislation on odor emissions, such as 

Germany and the United Kingdom. Countries such as Canada inspired the EU countries 

(Ferreira et al., 2017). 
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Directive 2010/75/EU (European Union, 2010), of 24 November 2010, on 

industrial emissions (the Industrial Emissions Directive), is the main EU’s instrument 

regulating pollutant emissions from industrial installations by establishing a framework 

for determining emission limits (including odorous pollutants’) for industries. 

Currently, there are no specific regulations for limiting emissions or managing 

odor pollution in Portugal. The Decree-Law nº 39 (Portugal, 2018a), of 11 June 2018 that 

regulates diffuse pollutants' emission, present in Article 9 that is an obligation of operators 

to minimize those emissions, which includes prevention and control of pollutants’ 

emissions, but not expressly the odorous ones (Diaz et al., 2019). However, as EU’s 

Member State, Industrial Emission Directive is applied in a manner such that industries 

that may cause odorous negative impact may comply with specific odor limits determined 

by olfactometric studies and modeling or other studies (Diaz et al., 2019). 

The Portuguese Decree-Law nº127 (Portugal, 2013b), of 30 August 2013, rectified 

by Declaration of Rectification nº 45-A (Portugal, 2013a), of 29 October 2013, which 

transposed EU’s Industrial Emission Directive, aims at preventing and reducing 

emissions to air, water and soil and the production of waste, by establishing the industrial 

emissions regime applicable to integrated pollution prevention and control. Article 5 of 

the decree mentioned above presents that environmental licensing is mandatory for 

industries. This environmental licensing system translates into a procedure for emitting a 

Título Único Ambiental (TUA) (Single Environmental Title). It is a single title of all the 

licensing acts in the environmental field, containing all the information related to the 

facility's or activity’s applicable requirements. So that, the activities that generate odorous 

pollution shall include in the scope of its TUA the actions that will be taken to monitor, 

prevent and control odoriferous emissions, including an odor’s management plan, when 

necessary. 

Although there are no specific regulations for limiting emissions or managing 

odor pollution in Portugal, a legal document aims to reduce NH3 emissions. Decree-Law 

nº 84 (Portugal, 2018b), of 23 October 2018 that transposes Directive (EU) 2016/2284 

sets national commitments to reduce emissions of the acidifying, eutrophicating, and 

ozone air pollution, that includes the pollutants NH3, sulfur dioxide, NOx, non-methane 

volatile organic compounds, and PM2.5. It establishes the obligation to elaborate, adopt, 

and execute the Programa Nacional de Controlo da Poluição Atmosférica (PNCPA) 
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(National Air Pollution Control Program), which is still being elaborated. Annex III 

presents the commitment to reducing NH3 emission by 7% for any year from 2020 to 

2029 and 15% for any year starting from 2030, having 2015 as the reference year.
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3 MATERIALS AND METHODS 

 

This chapter covers this work's detailed methodology, including the materials and 

equipment and the methods used. Firstly, it presents the methods of preparation of four 

types of adsorbents. Then the preparations processes’ carbon and mass balance and the 

adsorbents' elemental analysis are explained. The adsorbents’ characterization methods, 

including surface chemistry, ashes determination, textural properties, and void fraction 

characteristics, are presented. The setting-up of the lab-scale system is shown. The 

methods for evaluating the NH3 concentration in zero-air and leachate and its adsorption 

on the carbonaceous materials are presented. Lastly, the methods of regeneration and re-

use of adsorbents saturated with NH3 and the characteristics of this process's liquid 

effluent are described.  

 

3.1 General methodology 

 

This work consists of seven main stages: (1) preparation of adsorbent materials 

from OS and MB; (2) carbon and mass balance and characterization of the adsorbents 

prepared; (3) setting up of a lab-scale experimental system for adsorption assessment; (4) 

evaluation of zero-air and gases derived from leachate; (5) evaluation of the adsorption 

of NH3 derived from leachate by chemical analytical measurement and olfactory analysis; 

(6) regeneration and re-use of the saturated adsorbents and (7) carbon and mass balance 

of the adsorbents regenerated, and analysis of the liquid effluent.  

Figure 7 illustrates a schematic diagram of the abovementioned stages, including 

all inputs and outputs of each stage. 
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Figure 7. Schematic diagram of the stages of this work. 

 

3.2 Materials and equipment 

 

OS and MB were the feedstock used to prepare the adsorbent materials. The OS 

was obtained from black olives of brand DIA, S.A purchased in a local market. The MB 

was provided by the Universidade Tecnológica Federal do Paraná (UTFPR) (Federal 

Technological University of Paraná). Figure 8 shows the biomasses mentioned above. 

 

 

Figure 8. The feedstock (a) OS and (b) MB. 
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The leachate sample was obtained from the leachate storage tank of a composting 

line of a mechanical and biological treatment plant of organic wastes of the company 

Resíduos do Nordeste, EIM (Mirandela, Portugal). 95% sulfuric acid (H2SO4), 99% 

sodium hydroxide (NaOH), and 37% hydrochloric acid (HCl) were obtained from VWR 

Chemicals. Nitrogen 99.995% was supplied from Praxair. Distilled water and ultrapure 

water were used throughout the research. 

A heating chamber (model Binder FD 23) was used to dry all the samples and to 

prepare the hydrochars. A centrifugal mill and a ring sieve with trapezoid holes (model 

Retsch Ultra ZM 200) were used to mill the OS. Three high-pressure batch reactors 

(model 249M 4744-49, Parr Instrument Company) were used to perform the H2SO4-

assisted HTC. A horizontal quartz tube furnace (model Thermconcept) was used to 

perform the pyrolysis. A Total Organic Carbon (TOC) analyzer (model Shimadzu TOC-

L CSH/CSN) was used to determine the liquid phases' TOC. An elemental analyzer 

(model Carlo Erba Instrument EA 1108) was used to determine the adsorbents' elemental 

composition. An orbital shaker (model IKA KS 130 basic) was used in the adsorbents’ 

surface chemistry analysis. A furnace (model Thermolyne 6000) was used to determine 

the ash content of the adsorbents. A gas adsorption analyzer (model Quantachrome 

NOVA TOUCH LX4) was used to obtain the adsorption-desorption isotherms used to 

determine the adsorbents' textural properties. 

A zero-air generator (model SONIMIX 3012) was used to generate atmospheric 

air specially cleaned. A multi-gas analyzer (model GASERA ONE PULSE), which 

analyzes the infrared spectrum of the sample gases using a photoacoustic sensor based on 

the cantilever-enhanced optical microphone, was used to determine concentration rates 

of the gases NH3, H2O, CH4, CO2, and N2O. A mass flow controller and meter (model 

Brooks 4800 Series) was used in the gas evaluation and the adsorption tests. An air 

temperature and relative humidity sensor (model Campbell Scientific CS215) and a 

measurement and control data logger (model Campbell Scientific CR300), attached at a 

monitoring station, were used to measure and record air temperature data. Sample bags 

(model SKC Tedlar), with a storage capacity of 3 L, were used to collect the gas samples 

used in the olfactometric assessments. 

A magnetic stirrer (model IKA C-MAG HS 7) and an electronic contact 

thermometer (model IKA ETS-D5) was used in the adsorbents’ regeneration process. 
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3.3 Preparation of the adsorbents 

 

Four types of adsorbents were prepared: (I) bioadsorbent; (II) pyrochar, (III) 

hydrochar, and (IV) activated carbon. Each sample was labeled following its respective 

feedstock (OS – olive stone; MB – malt bagasse) and preparation process (M for milling; 

P for pyrolysis; HTC for H2SO4-assisted HTC), as shown in Table 6. All samples were 

dried (at 60 oC for 24 h in a drying chamber) during preparation and before the adsorption 

tests to remove any remaining moisture. 

 

Table 6. Types of adsorbent, process of preparation, feedstock, and sample label of the 
adsorbents prepared. 

Type Process of preparation Feedstock Sample 

bioadsorbent 
milling, drying OS OS-M 

drying MB MB 

pyrochar 
milling, drying, pyrolysis   OS OS-M-P 

drying, pyrolysis MB MB-P 

hydrochar 

milling, drying, 
H2SO4-assisted HTC 

OS OS-M-HTC 

drying,  
H2SO4-assisted HTC 

MB MB-HTC 

activated 
carbon 

drying,  
H2SO4-assisted HTC, 

pyrolysis 

MB MB-HTC-P 

 

Bioadsorbents consisted of raw biomass. Pyrochars were prepared by pyrolysis, 

hydrochars by H2SO4-assisted HTC, and activated carbon by sequential H2SO4-assisted 

HTC followed by pyrolysis. 

 

3.3.1 Bioadsorbents 

 

The preparation of the samples derived from OS was preceded by carefully 

cleaning each stone with water and a sponge, removing remaining olive on the stones, 

and subsequently drying. Therefore, the pretreated stones were placed into a centrifugal 

mill and milled using a ring sieve with trapezoid holes of 0.25 mm, as shown in Figure 9. 
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The milled OS was dried again after milling. The milled and dried OS was used as 

adsorbent (sample OS-M) and as the precursor of samples OS-M-P, and OS-M-HTC. 

 

 

Figure 9. The centrifugal mill and ring sieve with trapezoid holes used to mill the olive stones. 
 

Differently, MB was not milled but only dried at 60 oC for 24 h to reduce its 

moisture. The dried MB was used as adsorbent (sample MB) and as the precursor of 

samples, MB-P, MB-HTC, and MB-HTC-P. Figure 10 shows the bioadsorbents OS-M 

and MB. 

 

 

Figure 10.The bioadsorbents (a) OS-M and (b)MB prepared in this work. 
 

3.3.2 Pyrochars 

 

A mass of 5 g of the precursor (milled and dried OS or dried MB) was weighed in 

an analytical balance and put into a horizontal quartz tube furnace (Figure 11) to run 

pyrolysis, as elsewhere (Diaz de Tuesta et al., 2018). Briefly, the carbonization occurred 

under an N2 continuous flow rate of 100 Ncm3 min-1. The furnace was programmed to 

heat up at a rate of 10 ºC min-1 and keep isothermal phases of 1 h at 120 ºC, 400 ºC, and 
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600 ºC. Subsequently, an isothermal phase of 4 h at 800 ºC was performed, resulting in 

the pyrochars OS- M-P and MB-P, shown in Figure 12. 

 

 

Figure 11. The horizontal tube furnace used to perform the pyrolysis. 
 

 

Figure 12. The pyrochars (a) OS-M-P and (b) MB-P prepared in this work. 
 

3.3.3 Hydrochars 

 

OS-M-HTC and MB-HTC were prepared by HTC assisted by H2SO4. A mass of 

2.5 g of the precursor (milled and dried OS or dried MB) was immersed in 25 mL of 2.5 

mol L-1 H2SO4 solution and kept in a high-pressure batch reactor, which has a 125 mL 

removable PTFE cup and stainless-steel body, under autogenous pressure at 200 oC for 3 

h in a heating chamber. Figure 13 shows the three reactors that were used to prepare three 

samples at once. 
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Figure 13. The high-pressure batch reactors used to perform the H2SO4-assisted HTC. 
 

After cooling, the solids were recovered by filtration and washed with distilled 

water until the rinsing waters reached the distilled water's pH and became translucent. 

The solid material was dried in a drying chamber at 100 oC for 24 h, resulting in the 

samples OS-M-HTC and MB-HTC (Figure 14). The liquid effluent of washing was 

collected for characterization. Figure 15 illustrates the filtration and washing explained 

above. 

 

 

Figure 14. The hydrochars (a) OS-M-HTC, and (b) MB-HTC prepared in this work. 
 

 

Figure 15. Filtration and washing of the HTC’s solid product. 
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3.3.4 Activated carbon 

 

Sample MB-HTC-P was prepared by using the hydrochar MB-HTC as a 

precursor. The precursor was subjected to pyrolysis at the same operating conditions 

explained in topic 3.3.2, as described elsewhere (Diaz de Tuesta et al., 2018). 

 

3.4 Carbon and mass balance 

 

3.4.1 Biomass loss 

 

Biomass loss (B.L) represents the percentage of loss of biomass after passing the 

preparation processes. B.L was calculated by the difference between the initial biomass 

weight (before treatment process) and the final biomass weight (after treatment process), 

both weights on a dry basis. It was estimated for both prepared and regenerated samples. 

 

3.4.2 TOC of the liquid effluent obtained by HTC 

 

The degradation of the biomass through diverse reactions (e.g., hydrolysis and 

dehydration) during the HTC results in finding organic matter in the liquid phase of the 

process (Kruse et al., 2013). 

The liquid phase resulting from the preparation of OS-M-HTC and MB-HTC by 

H2SO4-assisted HTC was recovered to determine the TOC to assess the carbon release 

from raw biomass into the liquid phase. TOC quantification was determined using a TOC 

analyzer, shown in Figure 16. 

 

 

Figure 16. TOC analyzer used to assess the carbon released in the liquid phase. 
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3.4.3 Elemental analysis 

 

Elemental analysis was performed to determine the %wt of C, H, N, and S, of the 

adsorbents using an elemental analyzer. The %wt of O was estimated, given that the 

remaining of the CHNS-elemental analysis was considered ashes and O. 

 

3.5 Characterization of the adsorbents 

 

3.5.1 Surface chemistry characteristics 

 

The acidity and basicity of the adsorbents’ surface were determined by titration. 

The analysis started weighing 0.2 g of adsorbent and putting it in contact with 25 mL of 

sodium hydroxide (NaOH) 0.02 mol L-1 solution in a 100 mL Erlenmeyer flask. 

Subsequently, 0.2g of the same adsorbent was weighed and placed with 25 mL of 

hydrochloric acid (HCl) 0.02 mol L-1 solution in another flask. All flasks containing the 

mixture of adsorbent and solution were placed in an orbital shaker for 48 h at 320 rpm, 

as shown in Figure 17.  

 

 

Figure 17. The flasks containing the mixture of adsorbent and solution placed in the orbital 
shaker. 

 

Afterward, the mixtures were filtered, and 20 mL of each sample's liquid fraction 

(NaOH/HCl solutions) was titrated. To determine the acidity, the NaOH solutions were 

titrated with HCl 0.02 mol L-1. To determine the basicity, the HCl solutions were titrated 
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with NaOH 0.02 mol L-1. Acidity and basicity of the surface of the adsorbents were 

estimated, according to Equation 3. 

 

 
Acidity/Basicity = ൬

0.025

m
൰ × ቆCab - ൬

Vt  × Ctab

0.02
൰ቇ ×1000 

 (3) 

 

Where Acidity/Basicity is given in mmol g-1, m is the mass of adsorbent (g), Cab 

is the concentration of NaOH or HCl in solution (mol L-1), Vt is the titrated volume of 

NaOH or HCl (L), and Ctab is the concentration of NaOH or HCl for titration (mol L-1).  

 

3.5.2 Ashes determination 

 

The %wt of ash analysis was performed using a furnace, shown in Figure 18. A 

crucible was calcined at 800ºC to remove any moisture and weighed. Calcination lasted 

until the crucible achieved constant weight (+/- 0.0003 g of difference was considered 

acceptable), representing the crucible dry weight (Wc). Afterward, 0.1 g of adsorbent 

material (Wm) was placed on the crucible, taken to the muffle for 3-4 h at 800 ºC, and 

subsequently weighed. The crucible containing adsorbent material was taken to the 

muffle for one more hour and weighed again. Calcination lasted until the crucible 

containing adsorbent material achieved constant weight (+/- 0.0003 g of difference was 

considered acceptable), which represents the Wc plus the inorganic weight of inorganic 

material (Wci). The %wt of ash was estimated according to Equation 4: 

 

 
Ash = 

(𝑊 - 𝑊)

𝑊
 × 100 

 (4) 
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Figure 18. The furnace used in the ash analysis. 

 

3.5.3 Textural properties  

 

The adsorbents' textural properties were determined by analysis of nitrogen (at its 

boiling temperature of 77 K) adsorption-desorption isotherms obtained using a gas 

adsorption analyzer, following the same procedure as elsewhere (Diaz de Tuesta et al., 

2018). Briefly, the degassing method was performed at 200 ºC for a period of 16 h, 

according to IUPAC recommendation. The Brunauer–Emmett–Teller (BET) specific 

surface area (SBET) was determined using BET methods. The external surface area (Sext) 

and micropore volume (Vmic) were obtained by the t-method in which the thickness is 

calculated by using the ASTM D-6556-01 - Standard Test Method for Carbon Black — 

Total and External Surface Area by Nitrogen (ASTM, 2001). The total pore volume 

(Vtotal) was calculated in a p/p0 of 0.98. Calculations of those methods were all done by 

using TouchWinTM software v1.21. Micropore surface area (Smic) and average pore 

diameter (Wmic) were estimated by the approximations shown in Equations 5 and 6. 

 

 Smic = SBET − Sext   (5) 

   

 
Wmic= 4 × 

Vmic

Smic
  (6) 
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The carbonaceous adsorbents were classified according to the physisorption 

isotherms. The adsorption-desorption isotherms, obtained by the experimental analysis 

mentioned above, were compared to the eight physisorption isotherms curves 

classification, established by IUPAC (Figure 19). Each of these curves’ types is related 

to the pore structure's particular features and the underlying adsorption mechanism 

(Thommes et al., 2015). 

  

 

Figure 19. Main types of physisorption isotherms established by IUPAC.  
(Thommes et al., 2015). 

 

3.5.4 Void fraction characteristics 

 

Interparticle void volume and external void fraction of the bed were estimated 

using a 10 mL graduated measuring cylinder and distilled water. Adsorbent material was 

placed into the cylinder until it reaches the 2 mL mark (Vm). Subsequently, 2 mL of 

distilled water (Vw) was added to the same cylinder containing the sample, and the total 

volume was registered (Vt). The void volume (Vvoid), in mL, was estimated according to 

Equation 7, and the void fraction (Voidf), in %, was estimated according to Equation 8 

(McCabe et al., 1993). 
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 Vvoid = (Vm+ Vw)- Vt  (7) 

 

 
𝑉𝑜𝑖𝑑(%) = 

Vvoid

Vm
 × 100  (8) 

 

3.6 Set-up of the lab-scale system 

 

A lab-scale system was assembled to run tests to evaluate the concentrations of 

NH3 in the zero-air (za) and the leachate and evaluate, objectively and subjectively, the 

NH3 adsorption capacity of the adsorbents. The za and the leachate were evaluated before 

the adsorption tests. 

The system consisted of the following stages, connected by PTFE tubes and three 

valves (V1. V2, and V3), running continuously. Each sample collected by the multi-gas 

analyzer (MGA) takes about 3 minutes to be processed and registered by the equipment, 

and only after that period, the equipment collected the subsequent sample. Figure 20 

represents a schematic of the lab-scale system assembled for evaluating zero-air, leachate 

off-gases, and the adsorbents' performance and effectiveness, which is explained in detail 

below. 

 

i. generation of za by a zero-air generator (ZAG);  

ii. flow control (FC) and flow meter (FM) monitoring;  

iii. odorous gas (og) emission from the source of the odor (SO); 

iv. upstream gas for subjective evaluation (ugs) taken upstream from the fixed-

bed (FB) column;  

v. adsorption of pollutants on the adsorption column packed with FB of 

adsorbent; 

vi. gas sample is taken by the MGA (za, leachate off-gases, or downstream gas 

for objective evaluation (dgo)) taken downstream from the FB column. 

vii. downstream gas for subjective evaluation (dgs) taken downstream from the 

FB column;  

viii. effluent outlet (eo). 
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To evaluate the performance and effectiveness of the carbonaceous materials 

prepared from biomass in the adsorption of NH3, atmospheric air was taken into a ZAG 

used to reduce significantly any main pollutant to generate za (i). The FC controlled the 

za flow to maintain a flow rate of 0.8 L min-1
, and the FM displayed the current flow rate 

(ii). Then, za was led to an empty gas washing bottle (placed to avoid leachate return into 

the FM) followed by another gas washing bottle in which 5 mL of leachate, the SO, was 

mixed with distilled water (1:10 dilution). The za was injected on top of the SO, 

enhancing the og emission (iii). The og flow was led toward upstream the adsorption FB. 

Switching V1 to position two, the og flow was led to a sample bag to collect the ugs, used 

on the procedure explained on topic 3.7.3 (iv). With V1 in position one, og was led to FB 

flowing downward through the adsorbent to avoid disturbing the bed (v), as recommended 

by ASTM International (2019). After passing through the adsorption column, with V2 in 

position two, the dgo was taken by the MGA (vi). With V2 to position one, the gas flow 

was led to V3. With V3 in position two, the cleaner gas flow was led to a sample bag to 

collect dgs, used on the procedure explained on topic 3.7.3 (vii). With V3 in position one, 

the cleaner gas reached the eo and was released into the atmosphere (viii).  

In the evaluation of leachate off-gases, the same process explained in the previous 

paragraph was performed excluding the steps (iv), (v) and (vii); and in the evaluation of 

za steps (iii), (iv), (v) and (vii) were excluded (Figure 20).  
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Figure 20. Schematic of the set-up of the lab-scale system for evaluating: (a) zero-air (za), 
(b)leachate off-gases, and (c) the performance and effectiveness of the adsorbents. 

 

A photo of the lab-scale system is shown in Figure 21, in which the SO, the ugs, 

the FB column, the dgo, the dgs, and the MGA are detailed.  
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Figure 21. Photo of the lab-scale system assembled. In detail: source of odor (SO), upstream 

gas for subjective evaluation (ugs), fixed-bed (FB) column, downstream gas for objective 
evaluation (dgo), downstream gas for subjective evaluation (dgs), and multi-gas analyzer 

(MGA). 
 

3.7 NH3 concentration and adsorption 

 

All tests were performed at a flow rate of 0.8 L min-1, room temperature, and 

atmospheric pressure (approximately 93.7 KPa). The temperature was measured and 

recorded during all tests since they were performed with the room door open to the outside 

area to prevent odors from being trapped inside the room. An air temperature sensor and 

a measurement and control datalogger attached at a monitoring station placed right next 

to the room door (Figure 22) were used for this purpose. The temperature was measured 

and recorded every 10 minutes. 
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Figure 22. Monitoring station containing the air temperature sensor and the data logger. 

 

3.7.1 Evaluation of zero-air and gases derived from leachate 

 

The za and leachate emissions were evaluated concerning NH3 concentrations. 

Three tests lasting 3h each were performed to evaluate the za. Differently, to evaluate 

leachate off-gases, four tests lasting 8 h each and two tests lasting 24 h each were 

performed.  

The one-way analysis of variance (ANOVA) was used to determine whether any 

statistically significant differences between the za tests' NH3 means using the software 

Origin 2018, considering a significance level of 0.05. The same software was used to plot 

the NH3 emission curves of the leachate’s tests. The curves mentioned before were plotted 

by smoothening data using the moving average method, considering the three adjacent 

ranges (back and forward). 

 

3.7.2 Objective evaluation of NH3 adsorption 

 

Concentration rates of gases NH3, H2O, CH4, CO2, and N2O downstream from the 

FB were determined. Since the MGA can simultaneously measure NH3 and the gases 

H2O, CH4, CO2, and N2O, these non-odorous gases were also evaluated to verify any 

possible competitive adsorption. 

Mean NH3 inlet concentration was determined before adsorption tests, ranging 

from 6 ppm to 10 ppm. Three tests were performed for samples OS-M, OS-M-HTC,    
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MB-HTC; two tests for samples OS-M-P, MB, MB-P, and one test for sample                  

MB-HTC-P. The breakthrough curve of each sample was plotted as being the mean curve 

of its respective tests. 

The FB column was designed based on ASTM D5160-95(19) – Standard Guide 

for Gas-phase Adsorption Testing of Activated Carbon (ASTM, 2019). It consisted of a 

vertically supported cylindrical acetate sample tube (inner diameter = 1.2 cm, height = 

8.5 cm) filled with adsorbent and supported at its lower end by a fine flat mesh stainless 

steel screen in order to ensure fixed packing of the bed. Another mesh was placed at its 

upper end to ensure uniformity of flow profile across the adsorbent bed. Inert glass wool 

was used above and below the adsorbent to avoid slippage. A schematic of the FB column 

is shown in Figure 23. 

 

 

Figure 23. Schematic of the fixed-bed column: (1) cap, (2) glass wool, (3) mesh, and (4) 
adsorbent. 

 

The height of the adsorption bed (Z) has been established for each sample, and 

NH3 inlet concentration was estimated. NH3 concentration downstream from the 

adsorption column was measured every 3 minutes until the saturation of the bed. The 

software Origin 2018 was used to plot the breakthrough curves. The normalized 

breakthrough curves were plotted by smoothening data using the moving average method, 

considering the three adjacent ranges (back and forward). The curve of each sample 

represents the average values of all tests performed using that adsorbent. Various 

parameters were determined from the analysis of breakthrough curves:              
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breakthrough time (tb), stoichiometric time (tsto), saturation time (tsat), the height of mass 

transfer zone (HMTZ), and dynamic adsorption capacity (qa).  

The tb was defined as the time it takes the pollutant to break through the fixed bed 

of adsorbent; hence the time at the pollutant concentration increased. The tsto was defined 

as the time in which the pollutant’s concentration in the outlet stream reaches 50% of the 

inlet concentration (C/C0 = 0.50). The tsat was defined as the time in which the pollutant’s 

concentration in the outlet stream reaches 95% of the inlet concentration (C/C0 = 0.95). 

The HMTZ was determined by the tb and tsat values from the breakthrough curves 

and the Z. The HMTZ was estimated by Equation 9 (Ang et al., 2020): 

 

 

 
HMTZ = Z.· 

tsat- tb
tsat

 (9) 

 

with Z in cm, tb, and tsat in min. 

The qa (milligrams of adsorbate/grams of adsorbent) of the adsorbents were 

estimated by integration of the area under the breakthrough curve, also considering the 

system flow rate and the mass of adsorbent used (Ang et al., 2020; Balsamo et al., 2013; 

Gonçalves et al., 2011), as expressed in Equation 10: 

 

 

 
𝑞a = 

Q

m
. න (C0-Ct) dt

௧ೞೌ

0
 (10) 

 

where Q is the gas flow rate (L min-1), and m is the mass of adsorbent (g), with tsat (Ct = 

C0) in min. 

The integration was calculated using the graphing and analysis software Origin 

2018, by the Peak Analyzer tool. Peaks were found by the Fourier Self-Deconvolution 

method, with a predefined smoothing factor of 0.1 and 2 local points. C0 was converted 

from ppm to g cm-3 using the ideal gas law, considering the temperature of 298.15 K (25 

ºC) and standard atmospheric pressure (~ 1013.25 mbar). Figure 24 graphically illustrates 

the method mentioned above, which, differently from the ideal breakthrough presented in 

Figure 6, shows a real breakthrough curve obtained in an adsorption test performed in this 

work.  
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Figure 24. Illustration of the integration calculation using the Peak Analyzer tool in a real 
breakthrough curve obtained in an adsorption test performed in this work. 

 

3.7.3 Subjective evaluation of NH3 adsorption 

 

Subjective evaluation of odorous pollutants' adsorption consisted of olfactory 

analysis, which uses odorants' effect on the human sense of smell. The experiments were 

based on the recommendations of the EU standard EN 13725, Air Quality- Determination 

of Odor Concentration by Dynamic Olfactometry (CEN, 2003) and the German standard 

VDI 3882, Part1: Olfactometry – Determination of Odor Intensity (VDI, 1992a); and Part 

2: Olfactometry – Determination of Hedonic Odor Tone (VDI, 1992b), regard to materials 

and methods. The data record sheet used for odor intensity/hedonic odor tone assessment, 

shown in Appendix A, was adapted from the German standard VDI 3940, Part 3: 

Measurement of odor impact by field inspection - Determination of odor intensity and 

hedonic odor tone (VDI, 2010).  

The gas samples were collected during the tests with selected adsorbents, as 

explained in section 3.6. A panel of twenty assessors was selected to judge samples. All 

members were at least 16 years old at the date of tests and were asked to meet the 

following conditions: 

 do not be feeling hungry or thirsty or have eaten any strongly flavored foods 

on the day of the analysis; 

 do not drink alcoholic beverages on the day of the analysis; 
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 do not smoke from at least 30 minutes before olfactometric measurements; 

 preferably do not eat, drink (except water), use chewing gum or sweets from 

at least 30 minutes before olfactometric measurements;  

 preferably do not use perfumes, deodorants, body lotions, or any other 

cosmetic or personal hygiene, which may interfere with their olfactive 

perception on the day of the analysis.  

 do not be suffering from a cold or any other ailment affecting their perception 

of smell (e.g., allergic fits, sinusitis, etc.) at the moment of the analysis. 

The olfactometric assessments were performed using samples collected upstream 

and downstream of the FB column, as explained in topic 3.6, using 3 L sample bags. 

Before gas collection, the bags were tested for leakage and purged with clean air (za) 

several times to remove any remaining smell. The bags filled with samples were stored 

in a closed box to prevent direct sunlight, and the interval between the sampling and the 

analysis by delayed olfactometry did not exceed 30 h. Figure 25 shows pictures of an 

empty sample bag, the filling procedure, and the filled bag's storage. 

 

 

Figure 25. Pictures of sampling and storing steps: (a) empty sample bag, (b) sample being taken 
from the adsorption test, and (c) bags filled with samples stored. 
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One sample was taken upstream of the FB column and labeled SEFeed. Four 

samples were taken downstream of the FB column: SEClean - at maximum removal 

capacity; SEBreak - between breakthrough and stoichiometric times; SEStoic - between 

stoichiometric and saturation times; and SESatur - right after saturation. Figure 26 shows a 

schematic representation of the points of the breakthrough curve in which samples were 

collected. 

 

 

Figure 26. Schematic representation of downstream samples on the breakthrough curve.  
SEClean - at maximum removal capacity; SEBreak - between breakthrough and stoichiometric 

times; SEStoic - between stoichiometric and saturation times; and SESatur - right after saturation.  
 

The odors were evaluated concerning its intensity and hedonic tone 

(pleasant/unpleasant quality), as shown in Figure 27. According to VDI (1992a), the 

intensity level is verbal (or written) descriptions of an odor sensation to which numerical 

values are assigned and shall be expressed on a scale ranging from 0 (not perceptible) to 

6 (extremally strong). On the other hand, the hedonic tone is verbal (or written) 

descriptions of an odor sensation to which numerical values are assigned and shall be 

expressed on a scale ranging from 4 (extremely unpleasant) to +4 (extremely pleasant) 

(VDI, 1992a). 
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Figure 27. Odor (a) intensity and (b) hedonic tone scales. Based on (VDI, 1992a). 

 

Figure 28 shows the olfactometric assessment set-up, in which an olfactometer 

was assembled and used to present the undiluted gas samples to panelists for inhalation. 

The olfactometer was composed of ZAG, FC, FM, two sniffing ports (SP1 and SP2), the 

bag filled with sample, and PTFE tubing.  

 

 

Figure 28. Set-up of the olfactometric analysis: (a) olfactometer and (b) the sniffing ports in 
detail. 

SP2 

SP1 
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Each of the undiluted samples (odor stimulus) was presented for 10 seconds, using 

the SP2, with an additional decision time of 5 seconds. The odor stimuli followed the 

sequence: SEClean, SEBreak, SEStoic, SEFeed, and SESatur. The rounds of odor stimuli were 

interspersed with a break of 60 seconds between each stimulus, during which zero-air 

(neutral air) was presented as a sensory reference, using the SP1, to reset the sense of 

smell, avoiding adaptation of the odors. The analysis series started with neutral air, 

followed by a sample. Before each odor stimulus, the tube connected to the SP2 was 

flushed with neutral air to remove any odor traces that might be retained inside of it, 

derived from the previous sample.  

The series explained above was presented to each assessor twice, one time to 

intensity assessment and another time to hedonic tone assessment. The assessors did not 

know what samples they were evaluating in any case. Each assessor used a different pair 

of sniffing ports to avoid interferences and due to health issues. 

Before each of the olfactometric analysis, the panel members were informed that 

there is no “right” or “wrong” answer so that what matters is their impression. The 

assessor was also instructed to:  

I. put the nose entirely in the nozzle and inhale from the nose and exhale 

from the mouth, two or three times; 

II. immediately decide, as spontaneously as possible without too much 

reflection, and evaluate the odors regarding their intensity or 

pleasantness/unpleasantness, following the scales presented.  

 

3.8 Regeneration of saturated adsorbents 

 

3.8.1 Experimental procedure 

 

Regeneration of selected samples (OS-M and OS-M-HTC) was performed based 

on the method presented by Ro et al. (2015), which aimed to regenerate adsorbents 

saturated with NH3 using water, based on the fact that gaseous NH3 can be dissolved in 

water (ATSDR, 2011). In this sense, the saturated sample was placed in a round-bottomed 

flask containing ultrapure water (UPw) and a stir magnetic. The flask containing the 

sample mixed with water was placed on a magnetic stirrer to stir. An electronic contact 



Thalles Perdigão Lima 

68 
  
  

thermometer was used to control the temperature. Figure 29 illustrates the regeneration 

process.  

 

 

Figure 29. Set-up of the adsorbents’ regeneration process. 
 

All regeneration processes were conducted at 25-80 ºC and lasted 24 h stirring at 

a 1220 rpm speed. The saturated material’s concentration ranged from 2.4 to 16 g L-1. 

Subsequently, the flasks' content was filtered, and the regenerated material was placed 

into a drying chamber at 100 ºC for 24 h. The conditions and the label of the regenerated 

samples, in which the letter R represents “regenerated”, are summarized in Table 7. 

 

Table 7. Sample labeling and regeneration operating conditions. 

Regenerated 
Sample 

m 
(g) 

T 
(oC) 

VUPw  
(mL)  

Agitation  
speed 
(rpm) 

Duration  
of process 

(h) 

R_I_OS-M 1.2 25 500 

1220 24 
R_II_OS-M 2.4 25 150 

R_III_OS-M 1.2 80 500 

R_OS-M-HTC 0.5 25 100 
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One sorption cycle was performed, using each regenerated material, in the same 

experimental system explained in section 3.6. The same methodologies explained in 

section 3.7.2 were applied to evaluate the regenerated adsorbents' performance and 

effectiveness in removing gaseous NH3. 

 

3.8.2 TOC, conductivity, and pH of the liquid phase 

 

The liquid phase resulting from the regeneration of OS-M and OS-M-HTC were 

recovered to determine the TOC in order to assess the carbon release from raw biomass 

into the liquid phase. TOC quantification was determined using a TOC analyzer, shown 

in Figure 16. 

Before (ultrapure water) and after the regeneration process, the liquid phase's 

conductivity and pH were measured using a pH meter and a conductivity meter. 
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4 RESULTS AND DISCUSSION 

 

This chapter presents the results obtained after developing the steps explained in 

Chapter 3 and its discussion based on literature. The results are presented in the following 

order: the preparation processes’ carbon and mass balance and the adsorbents' elemental 

analysis; the NH3 concentration in zero-air and feed stream from leachate; the chemical 

and olfactometric analysis of NH3 adsorption; the surface chemistry, textural properties, 

and void fraction characterization; the regeneration and re-use of adsorbents saturated 

with NH3; and the characteristics of this regeneration's liquid effluent. 

 

4.1 Carbon and mass balance 

 

4.1.1 Biomass loss 

 

The B.L was determined by the difference between the initial biomass weight 

(before the treatment process) and the final biomass weight (after the treatment process), 

both on a dry basis. Table 8 shows the B.L of the samples prepared in this work. 

 

Table 8. Biomass loss (B.L) of samples prepared in this work. 

Sample 
B.L 
 (%) 

OS-M-P 74.9 

MB-P 75.8 

OS-M-HTC 50.7 

MB-HTC 59.7 

MB-HTC-P 85.3 

 

As presented in Table 8, the combination of H2SO4-assisted HTC, followed by 

pyrolysis (sample MB-HTC-P), led to the greatest B.L of 85.3%. The biomass pyrolysis 

also caused significant mass loss with samples OS-M-P and MB-P presenting B.L of 74.9 

and 75.8%, respectively. On the other hand, biomass prepared by H2SO4-assisted HTC 

losses more than half of the initial mass, with samples OS-M-HTC and MB-HTC 

presenting B.L of 50.67 and 59.66%, respectively. 
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B.L is mainly due to removal of moisture, volatilization of organic matter, attack 

of chemical agents, the solubility of the components in the chemical solutions, and loss 

in washing and filtration process (Ioannidou et al., 2007; Martín-Lara et al., 2013). 

 

4.1.2 TOC of the liquid effluent obtained by HTC 

 

The liquid phases resulting from the preparation of OS-M-HTC and MB-HTC by 

H2SO4-assisted HTC were recovered to determine the TOC. Table 9 shows the values 

obtained by TOC analysis. 

 

Table 9. Total Organic Carbon (TOC) of the liquid phase resulting from the H2SO4-assisted 
HTC processes. 

Sample 
TOC  
(g L-1) 

OS-M-HTC 9.42 

MB-HTC 11.76 

 

The liquid phase of the HTC presents organic matter due to the degradation of the 

biomass through diverse reactions (e.g., hydrolysis and dehydration) (Kruse et al., 2013), 

which is evidenced by the carbon results presented in Table 9. 

Both samples presented similar carbon loss, with the MB-HTC slightly higher 

(11.76 g L-1). According to Ronda et al. (2015), a decrease of TOC content of samples 

subject to chemical treatments is one of the main changes produced during chemical 

treatments. The TOC found in the liquid phases analyzed shows a decrease in the solid 

carbonaceous materials' TOC content. Leng & Zhou (2018) presented in a literature 

review that TOC values of the aqueous phase of the HTC of various biomass feedstock 

ranged from 2.38 to 104.2 g L-1, with most ranging from 9 to 23 g L-1. The TOC of 

samples presented in Table 9 may be considered low, comparing to the values presented 

above, which is positive since recent studies are focused on decreasing the load of organic 

matter dissolved in the liquid effluent in the HTC (Kruse et al., 2013). 
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4.1.3 Elemental analyses and ashes determination 

 

Table 10 presents the results of the elemental analyses of the adsorbents prepared, 

performed to determine the composition weight percentages (%wt) of carbon (C), 

hydrogen (H), nitrogen (N), sulfur (S), estimated oxygen (O) and ash. 

 

Table 10. Elemental composition of the adsorbents. 

  (%wt)   

  C H N S O* Ash C/H 

OS-M 49.30 6.27 0.15 0.06 43.58 0.64 7.86 

OS-M-P 87.98 1.04 1.10 0.08 5.82 3.99 85.32 

OS-M-HTC - - - - - 0.16 - 

MB 44.90 6.60 2.40 0.20 42.72 3.18 6.80 

MB-P 72.50 1.30 3.30 0.00 11.50 11.40 55.77 

MB-HTC 68.10 6.20 0.70 0.80 23.10 1.10 10.98 

MB-HTC-P 81.80 1.20 1.10 0.20 9.40 6.30 68.17 

* Estimated by difference (O = 100 wt% – C – H – N – S – ash) (Yek et al., 2019) 

 

Based on the results shown in Table 10, the pyrolyzed samples (OS-M-P, MB-P, 

and MB-HTC-P) showed higher C content and lower H and O content, hence higher C/H 

ratios. Sample OS-M-P presented the highest C content (87.98%) and C/H ratio (85.32%), 

which is almost 12 times greater than that of OS-M. Sample MB-HTC-P, prepared from 

MB by H2SO4-assisted HTC followed by pyrolysis, showed a higher C/H ratio (68.17%) 

than those prepared by the same feedstock only by pyrolysis (55.77%) and H2SO4-

assisted HTC (10.98%). The results presented above may be related to the decomposition 

and carbonization reactions, in which organic fractions of the feedstocks may have either 

being decomposed into volatile matter (e.g., CO, CO2, and CH4) and released as gases, or 

carbonized forming the pyrochars with improved aromaticity (Chen et al., 2017; Lam et 

al., 2017; Yek et al., 2019).  

Table 10 also showed that the HTC of biomass, producing the sample MB-HTC, 

also increased C and decreased H and O contents (hence increasing C/H), compared to 

the raw feedstock (MB). However, the decrease in H and O content was slighter than 

those observed for the pyrochars. It may be explained by the fact that a small fraction of 
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gases (CO, CO2, H2, and CH4) are generated during the hydrothermal process, especially 

when performed in temperatures below 260oC (Basso et al., 2015).  

Compared to the precursors' content, the H2SO4-assisted HTC also decreased ash 

content from 3 to 4 times (Table 10). It means that the process mentioned above reduces 

the amount of inorganic matter in the composition of the adsorbents after H2SO4 treatment 

of OS, which was also observed by Cagnon et al. (2009). The reduction in ashes may be 

ascribed to the metals' leaching from the raw biomass into the liquid phase by the acid 

attack during the HTC process. 

The values of composition weight percentages (%wt) founded for OS-M 

correspond with those presented by Ghouma et al. (2015), Martín-Lara et al. (2013), 

Cagnon et al. (2009), and González et al. (2009), which are within the ranges: 43.1 – 

52.34 for C; 5.9 – 7.11 for H; 0.03 - 1.0 for N; 0.01 – 0.8 for S; 40.47 – 49.1 for O and 

0.37 – 4.4 for ash. On the other hand, the values of composition weight percentages (%wt) 

founded for BM are similar to those presented by Franciski et al. (2018) and Mello et al. 

(2014) 46.84 for C; 8.18 for H; 3.86 for N; 0.38 for S; 40.74 for O and 2.78 for ash. 

The high carbon content of samples suggests that expectable carbon-rich materials 

have been prepared in this work. 

 

4.2 NH3 concentration and adsorption 

 

4.2.1 NH3 concentration in zero-air 

 

The concentration of NH3 in the za was evaluated. Three tests lasting 3 h each 

were performed. Figure 30 shows a box chart of NH3 concentrations in the zero-air stream 

generated by ZAG, used in the adsorption runs. 
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Figure 30. Concentrations of NH3 in the zero-air (za). 

 

All tests were performed at a flow rate of 0.8 L min-1. Temperatures ranged 

between 20.6 – 25.5, 20.5 – 28.2, and 17.3 – 24.2 o C during Tests 1, 2, and 3, respectively. 

The means of NH3 concentration in Tests 1, 2, and 3 were, respectively, 1.454 ± 0.316, 

1.442 ± 0.332, and 1.445 ± 0.333 ppm, which are graphically represented in Figure 30. 

Using the method Analysis of Variance (ANOVA), it was found that there was no 

significant difference in the means of NH3 concentration, with a p>0.05 (equals to 

0.97414).  

 

4.2.2 NH3 concentration in feed stream from leachate 

 

The concentration of NH3 in the inlet stream of the adsorption process (leachate 

off-gases) was evaluated. Four tests lasting 8 h and two tests lasting 24 h were performed 

at a flow rate of 0.8 L min1.  

Figure 31 shows the results of tests that lasted 8 h and the temperatures registered 

during each one. Temperatures ranged between 26.4 – 36.9, 20.6 – 27.3, 20.7 – 27, and 

22 – 33.4 oC during Tests 1, 2, 3, and 4, respectively. 

It was observed that the considerable variations of temperatures (increasing during 

Tests 1 and 4 and decreasing during Tests 2 and 3) did not contribute to a significant 

variation of NH3 emission. It was also noticed that about 2 h were necessary until 

Test 1 Test 2 Test 3
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

N
H

3 
(p

pm
)



Thalles Perdigão Lima 

75 
  
  

stabilization of emissions (Figure 31). Starting from hour 2, the NH3 concentration of all 

tests decreased slowly upon the time of contact. Decay ranged from 1 – 1.8 ppm within 

8 h of emission, which means a decay rate of 0.2 – 0.3 ppm h-1. 

 

 

Figure 31. Tests that lasted 8 h: (a) temperature during the tests and (b) concentration of NH3 

emitted from leachate. 
 

Figure 32 shows the results of the tests that lasted 24 h. Tests were considered 

after the stabilization of the emissions, noticed in the previous tests. It was noticed that 

the NH3 concentration of all tests decreased almost linearly until approximately 16 h. The 

NH3 concentration decayed by 4.6 – 4.7 ppm after 16 h of experiment, which means a 

slight decay rate of 0.29 ppm h-1. It was observed that a slight increase of NH3 

concentration starting at 14 – 16 h of experiment matches with the considerable increase 

of temperature (Figure 32), which may be ascribed to the fact of NH3 volatilization from 

leachate is increased by increasing the temperature (IPNI, n.d.).  
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Figure 32. Tests that lasted 24 h: temperature during the tests and concentration of NH3 emitted 

from leachate. (a) Test 1, and (b) Test 2. 
 

4.2.3 Chemical analysis of NH3 adsorption  

 

The concentration of NH3 downstream from the adsorption column was measured 

every 3 minutes until the bed's saturation. Normalized breakthrough curves are presented 

in Figure 33, in which the blue lines represent the materials prepared from OS, and the 

red represents the ones prepared from MB. Table 11 presents the values of m, Z, and the 

results of C0, tb, tsto, tsat, HMTZ, and qa. 
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Figure 33. Normalized breakthrough curves of the adsorption tests performed in this work. 
 

Table 11. Values of the mass of adsorbent (m) and height of the adsorption bed (Z), and the 
results of NH3 inlet concentration (C0), breakthrough time (tb), stoichiometric time (tsto), 

saturation time (tsat), height of mass transfer zone (HMTZ), and dynamic adsorption capacity (qa).  

Sample 
m  
(g) 

Z 
(cm) 

C0 
estimated 

(ppm) 

tb 
(min) 

tsto 
(min) 

tsat 
(min) 

HMTZ  
(cm) 

qa  
(mg g-1) 

OS-M 1.2 2.8 8.9 - 11.5 279 - 330 288 - 342 345 - 399 0.484 - 0.565 0.975 - 1.455 

MB 1.2 4.5 5.5 - 7.4 –  – – – 0.442 - 0.424 

OS-M-P 1.2 3.3 8.10 0 3 - 9 93 - 99 3.194 - 3.200 0.067 - 0.075 

MB-P 0.5 2.5 6.5 - 6.7 15 - 24 21 - 27 81 - 90 1.759 - 2.083 0.198 - 0.216 

OS-M-HTC 0.2 1 8.8 - 10.6 219 - 378 294 - 414 456 - 552 0.315 - 0.520 9.445 - 11.421 

MB-HTC 0.2 2 7.6 - 8.5 168 - 231 198 - 267 384 - 411 0.876 - 1.125 6.237 - 8.145 

MB-HTC-P 0.5 4.5 8.61 30 36 81 2.833 0.378 

 

Based on the results shown in Table 11, it was noticed that the samples OS-M-P 

and MB-P presented the lowest tb and tsat, which means that their mass transfer front 

reaches the column exit rapidly due to the high HMTZ values of these samples, that were 

very close to their Z values. On the other hand, samples OS-M-HTC and OS-M showed 

the highest tb and tsat, which means that their mass transfer front takes longer to reach the 

column exit due to the low HMTZ values of these samples. The samples OS-M-HTC and 
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OS-M also showed the highest tsto, which means that it took longer until the NH3 

concentration at the column was equal to 50% of the NH3 concentration at the column 

entrance. The sample MB-HTC-P showed low values of tb, tsto, and tsat and a high value 

of HMTZ. It was not possible to observe the breakthrough curve rightly for the MB sample 

at the tested operating conditions, so tb, tsto, and tsat were not determined. 

Table 11 also presents that the bioadsorbents OS-M and MB showed a greater qa 

than the pyrochars OS-M-P and MB-P. The qa of OS-M (0.975 – 1.455 mg g-1) is within 

the range of non-activated pyrochars prepared by Ro et al. (2015), which is 0.15 – 5.09 

mg g-1. Pyrolysis of OS-M, producing sample OS-M-P, resulted in 14 to 19 times the 

decrease in NH3 adsorption capacity. Hydrochars OS-M-HTC and MB-HTC showed a 

greater qa, ranging from 9.445 – 11.421 and 6.2437 – 8.145 mg g-1, respectively. The qa 

of OS-M-HTC was 8 to 10 times greater than the value obtained for OS-M. Similar values 

were found by C. Huang et al. (2008) using a treated commercial coconut shell AC with 

H2SO4 (5.691 – 11.245 mg g-1). It is worth mentioning that OS-M-HTC and MB-HTC 

showed a qa greater than the commercial ACs derived from biomass presented by 

Rodrigues et al. (2007) (0.6 to 1.8 mg g-1), Gonçalves et al. (2011) ( 4.7 – 5.3 mg g-1) and 

C. Huang et al. (2008) (2.3 mg g-1). On the other hand, the pyrolysis of MB-HTC, 

producing MB-HTC-P, resulted in 14 to 19 times the decrease of the qa.  

Steep breakthrough curves were observed for samples OS-M, OS-M-P, MB-P, 

and MB-HTC-P (Figure 33), suggesting that the adsorption process does not have a 

significant mass transfer barrier for those samples (Chou et al., 2006). On the other hand, 

a relatively gradual slope on the breakthrough curves was observed for samples OS-M-

HTC, MB, and MB-HTC, which indicates that transportation of NH3 from the gas stream 

to the adsorbents may present a significant mass transfer resistance. In the samples OS-

M-HTC and MB-HTC, the mass transfer is enhanced by the feasible chemical adsorption 

of NH3 with H2SO4, which compensates the resistance observed by the slope of its 

breakthrough curves (Chou et al., 2006).  

According to ASTM International (2019), the best adsorbent for most applications 

should have a high qa coupled with a short HMTZ. Therefore, OS-M-HTC was the best 

adsorbent for NH3 removal produced in this work since it has shown the lowest HMTZ and 

the highest qa. 
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The evaluation showed that adsorption of CH4, CO2, and N2O was not perceptible, 

which demonstrates non-competitive adsorption of NH3 with those gases. Differently, a 

perceptible amount of gaseous H2O was adsorbed. 

 

4.2.4 Olfactometric analysis of NH3 adsorption 

 

The samples used in the subjective evaluation of odorous pollutants' adsorption 

were collected during tests (presented in section 3.6) using the material with the highest 

uptake capacity (OS-M-HTC) and its precursor (OS-M) as adsorbents to compare each 

other. Five samples were collected in order to perform the subject evaluation: SEFeed, 

SEClean, SEBreak, SEStoic, and SESatur. 

Odor's hedonic tone was expressed on a scale ranging from -4 (extremely 

unpleasant) to +4 (extremely pleasant), while intensity was expressed on a scale ranging 

from 0 (not perceptible) to 6 (extremely strong). Appendix B shows the results of the 

odor’s hedonic tone and odor intensity assessments, respectively. 

To better interpret the subject evaluation, responses were grouped according to 

the following: odor hedonic tone – pleasant, neutral, and unpleasant; odor intensity – not 

perceptible, very weak/weak, distinct/strong, very strong/extremely strong.  

The odor hedonic tone’s results of the tests using the samples derived from 

adsorption tests are represented in Figure 34. As observed, sample SEFeed was unpleasant 

for the assessors (90% and 100% for OS-M and OS-M-HTC, respectively), been 

considered the most unpleasant sample. On the other hand, samples SEClean and SESatur 

were neutral or pleasant for 40 and 30% of the assessors, respectively, for both OS-M and 

OS-M-HTC, whereas sample SEBreak 33 and 60%, sample SEStoic 20 and 50%, for OS-M 

and OS-M-HTC, respectively. Samples SEClean, SEBreak, and SEStoic were the only 

considered pleasant for both materials. The results presented above showed that the 

adsorption using materials OS-M and OS-M-HTC reduced the effluent’s unpleasantness.  
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Figure 34. Evaluation of odor hedonic tone of samples derived from adsorption tests using 
(a) OS-M and (b) OS-M-HTC. 

 

The intensity’s results of the tests using the samples derived from adsorption 

tests are represented in Figure 35. As observed, the evaluation of samples derived from 

tests using OS-M showed that sample SEFeed was very strong or extremely strong for 

20% of the assessors and distinct or strong for 40%. Differently, sample SEClean was 

very strong or extremely strong for 10% of the assessors, and distinct or strong for 60%. 

On the other hand, samples SEStoic and SESatur were very weak or weak for most 

assessors (50% and 60%, respectively). None of the samples was considered not 

perceptible regard to odor intensity. 

The evaluation of samples derived from adsorption tests using OS-M-HTC has 

shown that samples SEClean and SEFeed was considered very strong or extremely strong for 
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20% of the assessors. On the other hand, samples SEClean was very weak or weak for 50% 

of the assessors. Differently, sample SEFeed was distinct or strong for 80% of the assessors, 

so that none of the assessors considered this sample’s intensity very weak or weak. None 

of the samples was considered not perceptible regarding odor intensity. The results 

showed that the adsorption might have slightly reduced the intensity of the odorous gases. 

 

 

Figure 35. Evaluation of odor intensity of samples derived from adsorption tests using 
(a) OS-M and (b) OS-M-HTC. 

 

Complementarily to odor intensity and hedonic odor tone assessments, comments 

were written by the assessors. Appendix C shows the comments and their respective 

periodicity. 
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Comments regarding odor hedonic tone, concerning samples derived from 

adsorption tests using OS-M-HTC, indicated similarity between samples SEClean, SEBreak, 

SEStoic, and SESatur; some comments considered some more/less unpleasant than others. 

The samples mentioned above also presented the smell of chemical products (chemical 

product or poison, acid, cleaning product, dentist’s office, brand new-sneakers, and 

polystyrene), which may be related to the preparation process of the sample OS-M-HTC 

by H2SO4-assisted HTC. One comment regarding sample SEClean showed that it presented 

smell of exhaust fumes of a car with malfunctioning catalyst, which may be related to the 

presence of H2S, as it is the main responsible for odor from the exhaust of vehicles in 

which the catalytic converter is not functioning properly (Windawi & Truex, 1988). 

Comments on sample SEFeed showed its unpleasantness, as it presented the smell of 

something rotten, sewage, wood in decomposition, and stable. Comments regarding odor 

intensity concerning samples derived from adsorption tests using OS-M-HTC showed 

that the odor of sample SEFeed is different from the odors of samples SEClean, SEBreak, and 

SEStoic, but with similar or little more intensity. Sample SESatur was considered a little less 

intense than sample SEFeed in one comment. 

Comments regarding odor hedonic tone, concerning samples derived from 

adsorption tests using OS-M, indicate similarity between samples SEClean, SEBreak, and 

SEStoic, and between samples SEFeed and SESatur. A comment specifying the unpleasantness 

regard to sample SEFeed was made. No comments were made on odor intensity concerning 

the samples derived from adsorption tests using OS-M. 

 

4.3 Characterization of the adsorbents 

 

4.3.1 Surface chemistry characteristics  

 

Acidity and basicity of the surface of fresh and saturated first-generated 

adsorbents were determined. Table 12 presents the values of basicity and acidity in 

mmol g-1. 
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Table 12. Acidity and basicity of the surface of fresh and saturated first-generation adsorbents. 

Sample 
Basicity 

(mmol g-1) 
Acidity 

(mmol g-1) 

OS-M 0.41 1.47 

OS-M (saturated) 0.31 1.43 

MB 0.44 1.42 

MB (saturated) 0.47 1.32 

OS-M-P 1.10 0.32 

MB-P 0.59 0.34 

OS-M-HTC 0.11 2.34 

OS-M-HTC (saturated) 0.45 1.95 

MB-HTC 0.14 2.37 

MB-HTC (saturated) 0.40 2.28 

 

As presented in Table 12, samples OS-M-HTC and MB-HTC showed similar 

acidity results, 2.34 and 2.37 mmol g-1, respectively. Content of acid groups in the 

bioadsorbents OS-M and MB was also significant, 1.47 and 1.42 mmol g-1, respectively. 

Besides increasing the adsorbents’ surface acidity due to the assistance of H2SO4, the 

HTC process is expected to produce a material with high concentrations of OFGs, 

including the acid ones (Jain et al., 2016; Ok et al., 2016). The presence of acidic groups 

gives a polar character to the adsorbent's surface, affecting the preferential adsorption of 

polar alkaline adsorbates, being such groups considered the key factor on the NH3 qa (Foo 

et al., 2013; Gonçalves et al., 2011). The correlation between the amount of NH3 adsorbed 

and the total amount of acidic groups on the surface of the adsorbent is approximately 

linear (Gonçalves et al., 2011; C. Huang et al., 2008; Mochizuki et al., 2016; J. Wang et 

al., 2016; Zheng et al., 2016). The greater NH3 qa of samples OS-M-HTC and MB-HTC, 

which also present greater surface acidity, confirm the statement above. 

The pyrochars OS-M-P and MB-P, on the other hand, presented greater content 

of basic groups, 1.10 and 0.59 mmol g-1, respectively, and lower content of acidic groups, 

0.32 and 0.34 mmol g-1, respectively (Table 12). The samples mentioned above were also 

the ones that presented a very low NH3 qa, as shown in topic 4.2.3. Pyrochars that are 

effective in the sorption of inorganic or polar organic contaminants, such as NH3, are 
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usually obtained in relatively low pyrolysis temperatures (<= 500 ºC), presenting more 

oxygen-containing functional groups, electrostatic attraction, and precipitation (Ahmad 

et al., 2014). Nonetheless, the pyrochars produced in this work were obtained by pyrolysis 

in high temperatures (up to 800 ºC), which caused a decrease of acidic functional groups 

(especially carboxylic functional groups), and the appearance of basic functional groups 

(Tomczyk et al., 2020). 

Based on the results presented in Table 12, it was noticed that all samples saturated 

with NH3 showed a slight decrease in the content of acid groups. Samples prepared by 

H2SO4-assisted HTC saturated with NH3 showed a significant increase in the content of 

basic groups, with the saturated OS-M-HTC increasing the basicity four times and 

saturated MB-HTC almost three times. The significant increase of basic groups on the 

surface of those saturated adsorbents may be ascribed to the higher amount of NH3 

adsorbed.  

 

4.3.2 Textural properties  

 

Figure 36 shows N2 isotherms adsorption of the materials OS-M-P, MB-P, OS-

M-HTC, MB-HTC, and MB-HTC-P. The samples subject to pyrolysis (OS-M-P, MB-P, 

and MB-HTC-P) showed isotherms type I (b), given by microporous materials with 

relatively small external surfaces, with pore size distributions including wider micropores 

and possibly narrow mesopores (Wmic < ~ 2.5 nm). The samples subject only to H2SO4-

assisted HTC (OS-M-HTC and MB-HTC) showed isotherms type III, given by nonporous 

or macroporous materials.  

The textural properties SBET, Sext, Smic, Vmic, Vtotal, and Wmic of the adsorbents are 

summarized in Table 13. 
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Figure 36. N2 adsorption-desorption isotherms of the adsorbents at 77 K. 

 

Table 13. Textural properties of the adsorbents: specific surface area (SBET), external surface 
area (Sext), micropore surface area (Smic), micropore volume (Vmic), total pore volume (Vtotal), and 

average pore diameter (Wmic). 

Sample 
SBET  

(m2 g-1) 
Sext 

 (m2 g-1) 
Smic  

(m2 g-1) 
Vmic 

(mm3 g-1) 
Vtotal 

(mm3 g-1) 
Vmic/Vtotal

(%) 
Wmic  

(nm) 

OS-M-P 172 14 158 83 109 76 2.1 

MB-P 50 11 39 20 34 59 2.1 

OS-M-HTC 4 4 0 0 16 0 - 

MB-HTC 12 11 1 0 25 0 - 

MB-HTC-P 391 32 359 193 297 65 2.1 

 

Table 13 shows that the combination of H2SO4 assisted-HTC followed by 

pyrolysis resulted in the adsorbent (MB-HTC-P) with the highest values of SBET, Sext, Smic, 

Vmic, and Vtotal. These results were expected since, when used as precursors, hydrochars 

play an essential role in forming porosity and higher surface areas of ACs (Jain et al., 

2016).  

The samples subjected to pyrolysis showed the greatest SBET, Smic, Vmic, Vtotal, and 

Wmic (Table 13), likely due that the removal of volatile matter through this process 
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enriched the carbon composition, as seen in Table 10, forming the porosity on these 

adsorbents (Yek et al., 2019). Those samples are predominately microporous, as shown 

in the Vmic/Vtotal proportion. 

It was also noticed that the sample OS-M-P showed SBET 3 times greater and Smic 

4 times greater than the sample’s MB-P same properties. Even though the same pyrolysis 

process prepared both samples, the MB-P precursor was not subjected to milling before 

preparation to reduce the precursors’ particle size. Since particle size affected the 

pyrochar structure (Asadullah et al., 2010), the smaller particle size of biomass OS led to 

a greater available surface area subjected to pyrolysis, which may explain greater SBET 

and Smic of sample OS-M-P. 

The samples OS-M-HTC and MB-HTC, which presented greater NH3 adsorption 

capacity, shown in topic 4.2.3, showed very low values for all textural parameters, some 

of them even zero (Table 13). That may be explained by the fact that the specific surface 

area and pore volume do not directly influence the adsorbing amount of NH3 (C. Huang 

et al., 2008).  

 

4.3.3 Void fraction characteristics 

 

Table 14 shows the parameters and results of the determination of the void fraction 

characteristics of the adsorbents. 

 

Table 14. Void fraction characteristics determination: volume of adsorbent material (Vm), 
volume of distilled water (Vw), total volume (Vt). volume of voids in the bed (Vvoid), and void 

fraction (Voidf). 

Sample 
Vm 

(mL) 
Vw 

(mL) 
Vt 

(mL) 
Vvoid 
(mL) 

Voidf 

(%) 

OS-M 

2 2 

3 1 50 

OS-M-P 3.8 0.2 10 

OS-M-HTC 3.6 0.4 20 

MB 2.5 1.5 75 

MB-P 3.4 0.6 30 

MB-HTC 3.8 0.2 10 
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Table 14 presents that the bioadsorbent MB showed the greatest Voidf (75%), 

likely due to its greater particle size and irregular shape, which was not measured in this 

work but was visibly perceived, as shown in Figure 10. The reduction of the Voidf of the 

raw materials MB and OS-M after being subjected to pyrolysis (resulting in OS-M-P and 

MB-P) and H2SO4-assisted HTC (resulting in OS-M-HTC and MB-HTC) may be 

ascribed to the reduction of the particles sizes after these processes, resulting in less 

interparticle voids. 

Reducing the Voidf is beneficial to the adsorption process since fewer void spaces 

mean greater available surface area to retain the adsorptive gaseous pollutant. 

 

4.4 Regeneration of saturated adsorbents 

 

4.4.1 NH3 adsorption with regenerated samples 

 

Normalized breakthrough curves obtained with OS-M and OS-M-HTC 

regenerated materials are presented in Figure 37. The parameters and results of adsorption 

tests using regenerated adsorbents (R_X_OS-M and R_X_OS-M-HTC) are presented in 

Table 15. The breakthrough curves, the parameters, and the results related to first-

generation samples OS-M and OS-M-HTC, presented in section 4.2.3, are also shown in 

the following figure and table for comparison purposes.  

 

 
Figure 37. Normalized breakthrough curves of adsorption tests using regenerated (R_X_OS-M 

and R_X_OS-M-HTC) and first-generation (OS-M and OS-M-HTC) samples.  
(A) bioadsorbents and (B) hydrochars. 
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Based on the curves presented in Figure 37, it was noticed that all the regenerated 

samples showed tb and tsat, lower than the mean values of the same parameters of the first-

generation samples. The figure also showed that all the regenerated samples have also 

shown steeper breakthrough curves (being the R_III_OS-M the steepest one) than those 

of its respective first-generation samples, suggesting that the adsorption process on the 

water-washed samples does not show a significant mass transfer barrier (Chou et al., 

2006). It was also noticed that all the regenerated samples had shown more efficiency in 

NH3 removal before its respective tb. Both statements presented above may be explained 

by the fact that washing the samples might have increased the access to their pore sites 

that could be blocked before washing (Ro et al., 2015). 

Based on the results presented in Table 15, after the first NH3 desorption-sorption 

cycle, samples R_I_OS-M, R_II_OS-M, and R_III_OS-M showed 94, 76, and 107% of 

the mean qa of the first-generation OS-M. Differently, after the first NH3 desorption-

sorption cycle, sample R_OS-M-HTC has shown 68% of the mean qa of the first-

generation OS-M-HTC. 

Table 15 also showed that the samples R_I_OS-M and R_III_OS-M, with 1.2 g of 

material washed with 500 mL of ultrapure water in temperatures of 25 and 80 oC, 

respectively, presented approximately the same HMTZ as the one of the first-generation 

OS-M, and a qa very close to or better than the mean qa of the first-generation OS-M. 

Differently, the sample R_II_OS-M, with 2.4 g of material washed with 150 mL of 

ultrapure water in temperatures of 25 oC, presented a higher HMTZ and a lower qa than the 

same parameters of the first-generation OS-M. On the other hand, the sample R_OS-M-

HTC, with 0.5 g of material washed with 100 mL of ultrapure water in temperatures of 

25 oC, presented an HMTZ close to and a qa lower than those of the first-generation OS-M-

HTC. 

The results indicate that the use of greater VUPw (500mL) and regeneration process 

performed in higher T (80oC) may produce a regenerated adsorbent with greater 

adsorption capacity since the parameters pointed above resulted in the sample R_III_OS-

M, which showed HMTZ very similar to and a qa higher than the ones of the first-generation 

OS-M (Table 15), and the steepest breakthrough curve (Figure 37). 
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Table 15. Values of the mass of adsorbent regenerated (m), regeneration temperature (T), volume of ultrapure water (VUPw), mass of regenerated adsorbent in 
the fixed-bed column (FBm), height of the adsorption bed (Z), and the results of NH3 inlet concentration (C0), breakthrough time (tb), stoichiometric time (tsto), 

saturation time (tsat), height of mass transfer zone (HMTZ), and dynamic adsorption capacity (qa). 

Sample 
 

m 
(g) 

T 
(oC) 

VUPw  
(mL) 

FBm  
(g) 

Z 
(cm) 

C0 
estimated 

(ppm) 

tb 
(min) 

tsto 
(min) 

tsat 
(min) 

HMTZ  
(cm) 

qa  
(mg g-1) 

OS-M - - - 1.2 2.8 8.9 - 11.5 279 - 330 288 - 342 345 - 399 0.484 - 0.565 0.975 - 1.455 

R_I_OS-M 0.93 25 500 0.93 2.2 8.3 207 222 276 0.550 1.147 

R_II_OS-M 2.12 25 150 1.2 2.8 8.3 198 216 288 0.875 0.926 

R_III_OS-M 1 80 500 1 2.5 9.0 261 270 330 0.523 1.304 

OS-M-HTC - - - 0.2 1 8.8 - 10.6 219 - 378 294 - 414 456 - 552 0.315 - 0.520 9.445 - 11.421 

R_OS-M-HTC 0.45 25 100 0.2 1 10 252 288 387 0.349 7.082 
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4.4.2 Biomass loss 

 

The B.L was determined by the difference between the initial biomass weight 

(before the regeneration process) and the final biomass weight (after the regeneration 

process), both on a dry basis. Table 16 shows the parameters of the regeneration processes 

and the B.L of each sample.  

 

Table 16. Parameters of the regeneration processes and biomass loss: regeneration temperature 
(T), volume of ultrapure water (VUPw), initial and final mass of adsorbent, and biomass loss 

(B.L). 

Sample 
T 

(oC) 
VUPw 
(mL) 

Initial 
m 
(g) 

Final 
m 
(g) 

B.L  
(%) 

R_I_OS-M 25 500 1.2 0.93 22.5 

R_II_OS-M 25 150 2.4 2.12 11.7 

R_III_OS-M 80 500 1.2 1 16.7 

R_OS-M-HTC 25 100 0.5 0.45 10.1 

 

As shown in Table 16, the sample R_OS-M-HTC, which had the lowest initial 

mass and was washed with the lowest ultrapure water volume, showed lower B.L. On the 

other hand, the samples R_I_OS-M and R_III_OS-M, washed with a greater VUPw, 

showed greater B.L. resulted from the filtration process. 

 

4.4.3 TOC, conductivity, and pH of the liquid phase 

 

Table 17 presents the regeneration processes' parameters and the values of TOC, 

conductivity, and pH of liquid phases of each regenerated sample, before and after the 

regeneration. Conductivity and pH values were corrected to the reference temperature of 

25 o C.  

The results presented in Table 17 showed that the samples R_I_OS-M and 

R_III_OS-M, with 1.2 g of material washed with 500 mL of ultrapure water in 

temperatures of 25 and 80 oC, respectively, as well as sample R_OS-M-HTC, with 0.5 g 
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of material washed with 100 mL of ultrapure water in temperatures of 25 oC, presented 

the same TOC values. Differently, sample R_II_OS-M, with 2.4 g of material washed 

with 150 mL of ultrapure water in temperatures of 25 oC, presented a higher TOC value, 

which can be explained by the fact that the carbonaceous mass washed was double that 

the mass of samples R_I_OS-M and R_III_OS-M.  

As shown in Table 17, after the regeneration process, the pH of the liquid phase 

of all samples increased. The difference between the pH of ultrapure water (before 

regeneration) and the liquid phase (after regeneration) ranged from 1.4 and 2.3. The 

desorption of alkaline NH3 may explain the increase of pH in the liquid phase. The sample 

R_OS-M-HTC, derived from saturated OS-M-HTC, the one with the highest qa, shows 

the greatest pH increase. It was expected since a greater amount of NH3 should be 

desorbed during the regeneration of the adsorbent. 

The conductivity of the liquid phase of all samples increased after regeneration. 

The rising of conductivity may be explained by the increasing of ions due to polar 

compounds' desorption, predominately NH3, in this case. Samples R_II_OS-M and R_OS-

M-HTC show the highest conductivity, 266 and 76 µs cm-1, respectively (Table 17). They 

were the ones with a greater content of NH3 since the sample R_II_OS-M had the greater 

mass of saturated adsorbent (2.4 g), and the sample R_OS-M-HTC is derived from the 

adsorbent with the highest NH3 qa (OS-M-HTC). 

Besides the solubility of NH3 in water, washing the saturated samples may have 

increased the access to pores that might have been blocked by a mineral content, and/or 

washing with ultrapure water might have removed other ions from its surface (Ro et al., 

2015). On the other hand, washing causes loss of carbon content, as shown by TOC 

results.  
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Table 17. Parameters of the regeneration processes and liquid phase characteristics: mass of 
adsorbent before regeneration (m), temperature (T), volume of ultrapure water (VUPw), TOC, and 

conductivity and pH of the liquid phase (before and after the regeneration). 

Sample 
 

m 
(g) 

T 
(oC) 

VUPw 
(mL) 

TOC 
(g L-1) 

Before regeneration After regeneration 

pH  
Conductivity 

 (µs cm-1) 
pH  

Conductivity 
 (µs cm-1) 

R_I_OS-M 1.2 25 500 0.04 

5.6 1 

7.4 30 

R_II_OS-M 2.4 25 150 0.15 7 266 

R_III_OS-M 1.2 80 500 0.04 7.2 46 

R_OS-M-HTC 0.5 25 100 0.04 7.9 76 
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5 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK  

 

5.1 Conclusions 

 

Different adsorbents were prepared, using agro-industrial residues as precursors. 

They were tested for odor abatement in an experimental lab-scale adsorption system 

developed for this purpose, showing that biomass waste can be valorized into high-added-

value products with environmental applications.  

The concentration of the odorous pollutant NH3 in zero-air and composting 

leachate was evaluated using the experimental system. Even though an odor's actual 

source was used, NH3 emission rates were considerably stable over time, making it 

possible to use it as a source of gaseous pollutants in the adsorption tests performed using 

the adsorbents prepared from biomass. Despite using a mixture of gases instead of a 

standard NH3 gas, selective removal of NH3 was observed, as no competitive adsorption 

was noticed.  

The samples prepared by H2SO4-assisted HTC showed greater content of acid 

groups and NH3 adsorption capacities. Although the good performance of the hydrochars 

mentioned above on NH3 adsorption, they lost more than half of weight during 

preparation. Samples subjected to pyrolization show significant biomass loss (75 to 85%), 

good textural properties, and minimal NH3 adsorption capacity. It confirms the crucial 

role of acidic functional groups in NH3 adsorption and the fact that surface area and pore 

volume, independently, do not directly influence the adsorption of NH3. The bioadsorbent 

prepared only by milling OS was also capable of adsorbing NH3 and presented the 

advantage of being environmentally-sound since it requires low energy expenditure, and 

no chemicals are expended in its preparation. Additionally, the samples prepared from 

OS showed the lowest height of mass transfer zone, which confers more efficiency to the 

adsorbents (ASTM, 2019). 

Additionally, the regeneration process using water delivered adsorbents capable 

of being used in one NH3 sorption-desorption cycle with satisfactory performance, 

leading to increasing the materials' resource-use efficiency. Keeping the adsorbents in use 

longer by reusing them makes the process more sustainable, promoting a circular 

economy (Baldikova et al., 2019).  
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A low-cost olfactometer was prepared and successfully used in the subjective 

evaluation of NH3 adsorption. Olfactometric evaluations confirmed that adsorbents 

prepared by OS are capable of reducing odor annoyance of leachate off-gases.  

Finally, this work reinforced the importance of objective and subjective evaluation 

of odor abatement undertaken jointly for a complete assessment of odor control. 

 

5.2 Recommendations for future work 

  

Considering that the materials prepared in this work by pyrolysis presented greater 

surface area and pore volume, further research is recommended to investigate the 

preparation of adsorbents from these materials by functionalization with an acid, to 

provide more functional acid groups on its surface, which could result in a material with 

great NH3 adsorption capacity. The use of environmentally-sound acids is suggested in 

order to reduce the risk of negative environmental impacts. The solid acid catalyst 

prepared by Gong et al. (2014) showed to be an effective and stable alternative of H2SO4 

and could be a possible green acid to be used. As odor from leachate may be related both 

to NH3 and H2S off-gases (Cheng et al., 2019) and by the fact that adsorption of H2S may 

be correlated with pore structure, especially with micropore surface area (Smic) 

(Mochizuki et al., 2016), a material prepared by the process mentioned above could be 

capable of adsorbing both pollutants. The removal of multi-component pollutant gases is 

efficient and economically advantageous (Chen et al., 2017). According to Yeom et al. 

(2017), a regular and interlinked adsorbent pore system was found to be more crucial than 

larger surface areas in NH3 adsorption, so that it should also be considered for further 

studies. 

It is also recommended as further studies improving techniques to allow the reuse 

of the adsorbents by its regeneration. The regeneration using water, presented in this 

work, could be improved by further investigations of the role of parameters m, T, and 

VUPw in the regenerated adsorbents’ performance on NH3 adsorption. Additionally, the 

OS-M sample could be subject to various adsorption-desorption cycles until it loses the 

NH3 adsorption capacity and, then, be used as a precursor to prepared materials 

impregnated with eco-friendly acid, to be used in other adsorption-desorption cycles until 

its exhaustion. This action could considerably prolong the lifespan of the material. 
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Further studies could also evaluate the use of exhausted adsorbents and the liquid 

phase of regeneration, both nitrogen sources, as raw material for fertilizers (Amaral et al., 

2016; Chou et al., 2006; Melenová et al., 2003). Figure 38 shows the possible 

improvement of this work's stages after further studies that are recommended above.  

 

 

Figure 38. Possible improvement of the stages of this work after future studies. 

 

Therefore, after being subjected to various adsorption-desorption cycles until its 

NH3 adsorption capacity being considerably reduced, exhausted adsorbents and liquid 

phase of the regeneration process could be reused as fertilizers instead of being 

disposed/incinerated.  

In conclusion, the implementation of the improvements presented above could 

result in a process even more sustainable.  
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APPENDIX A 

 

DATA RECORD SHEET SUBJECTIVE ODOR EVALUATION 
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APPENDIX B 

 

RESULTS OF THE EVALUATION OF ODOR HEDONIC TONE AND 

INTENSITY OF SAMPLES OS-M AND OS-M-HTC. 

 

Results of odor hedonic tone of samples OS-M and OS-M-HTC. 

Assessor 
OS-M OS-M-HTC 

SEClean SEBreak SEStoic SEFeed SESatur SEClean SEBreak SEStoic SEFeed SESatur 

I  0 -1 -2 -2 -3 2 3 1 -3 3 

II -1 -1 -1 -2 0 2 2 2 -1 -1 

III 1 -1 2 -2 -1 -1 0 -2 -3 -3 

IV -1 -1 -1 -2 -1 1 1 0 -3 0 

V 0 1 -1 -3 0 -2 -3 -3 -4 -3 

VI -2 -2 -2 -2 -2 -1 0 0 -2 0 

VII -1 -1 -2 -3 -1 1 2 -1 -2 -1 

VIII 3 1 -2 -1 -3 -1 -1 -1 -3 -2 

IX -2 0 -1 0 -1 -1 -1 0 -2 -2 

X -1 - 0 -2 0 -1 -2 -1 -3 -2 

 

Results of odor intensity of samples OS-M and OS-M-HTC. 

Assessor 
OS-M OS-M-HTC 

SEClean SEBreak SEStoic SEFeed SESatur SEClean SEBreak SEStoic SEFeed SESatur 

I  3 3 2 3 2 2 1 3 4 1 

II 2 3 2 5 1 2 3 3 4 3 

III 4 4 5 5 3 2 2 4 4 3 

IV 3 2 1 1 2 4 4 3 4 5 

V 3 3 2 2 1 5 3 2 5 3 

VI 2 2 3 4 3 2 2 3 3 2 

VII 3 2 3 4 3 2 3 4 4 4 

VIII 5 3 3 2 4 4 4 3 3 2 

IX 3 - 1 1 2 3 2 2 4 3 
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APPENDIX C 

 

ASSESSORS COMMENTS ON THE EVALUATION OF ODOR HEDONIC 

TONE AND INTENSITY OF SAMPLES OS-M-HTC OS-M 

 

Table C1. OS-M-HTC - Comments on Odor Hedonic. 

OS-M-HTC  
Comments on Odor Hedonic Tone  

Sample 
label 

Comments 
  

Sample 
label 

Comments 

SEClean 

Mild odor little unpleasant (2x);   

SEFeed 

Smells something rotten (2x) 

It gets unpleasant after a while;   Smells sewage sludge; 

Smell of acid;   Smells sewage; 

Smell of exhaust fumes of a car with 
malfunctioning catalyst;   

Burnt odor, more than SEStoic; 

Smells corn chips (2x);   Weak smell of wood decomposition; 

Smell of cleaning product;   Smells animal stable; 

Smell of dentist's office;    Very unpleasant. 

Smells wood.   

SESatur 

Less unpleasant than SEFeed; 

SEBreak 

Similar to SEClean (2x);   Less unpleasant than SEBreak; 

Similar to SEClean, but less unpleasant;   Very similar to SEClean, but more unpleasant; 

Less unpleasant than SEClean;   Smelly feet; 

Little more unpleasant than SEClean;   Similar to SEClean, SEBreak and SEStoic; 

Slightly unpleasant;   Similar to SEStoic; 

Burnt odor (2x);   Smell of chemical product or poison; 

Slightly smell of hay or straw;   Smell of dentist's office.  

Smell of grass;             

Smell of chemical product or poison;             

Smell of brand-new sneakers.             

SEStoic 

Similar to SEClean             

Similar to SEBreak (2x)             

Less unpleasant than SEBreak;             

Little more unpleasant than SEClean;             

Slightly smells like corn chips (2x);             

Burnt odor, more than SEBreak;       
  

    

Smells polystyrene;             

Unpleasant but not much;             

Smells bird food.             
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 Table C2. OS-M - Comments on Odor Hedonic. 

OS-M  
Comments on Odor Hedonic Tone 

Sample 
label 

Comments 

SEClean 
Smells something roasted; 

Known odor, however unidentified. 

SEBreak 

Similar to SEClean (3x); 

Smells something roasted;  

Warming sensation. 

SEStoic 

Similar to SEClean; 

Cooling sensation; 

Smells rotten wood; 

Smells products used in water treatment in swimming pools. 

SEFeed 
Characteristic smell, however unidentified; 

Smell of frying but unpleasant.  

SESatur 

Similar to SEFeed; 

Warming sensation; 

Smelly feet; 

Parmesan cheese; 

Strange odor. 
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Table C3. OS-M - Comments on Odor Intensity. 

OS-M-HTC  
Comments on Odor Intensity 

Sample 
label 

Comments 

SEClean Intense sour smell 

SEBreak Little more intense than SEClean (2x), however same unpleasantness  

SEStoic 

Little more intense than SEClean and SEBreak; 

Little less intense than SEBreak. 

SEFeed 
Little more intense than SEClean, SEBreak, and SEStoic; 

The odor is different from SEClean, SEBreak, and SEStoic; however, similar intensity. 

SESatur Little less intense than SEFeed. 
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